Quantum walk in stochastic environment

被引:0
作者
Avnit B. [1 ]
Cohen D. [1 ]
机构
[1] Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva
基金
以色列科学基金会;
关键词
D O I
10.1103/PhysRevE.108.054111
中图分类号
学科分类号
摘要
We consider a quantized version of the Sinai-Derrida model for "random walk in random environment."The model is defined in terms of a Lindblad master equation. For a ring geometry (a chain with periodic boundary condition) it features a delocalization-transition as the bias in increased beyond a critical value, indicating that the relaxation becomes underdamped. Counterintuitively, the effective disorder is enhanced due to coherent hopping. We analyze in detail this enhancement and its dependence on the model parameters. The nonmonotonic dependence of the Lindbladian spectrum on the rate of the coherent transitions is highlighted. © 2023 American Physical Society.
引用
收藏
相关论文
共 47 条
[1]  
Sinai Y. G., The limiting behavior of a one-dimensional random walk in a random medium, Theory Probab. Appl, 27, (1982)
[2]  
Derrida B., Velocity and diffusion constant of a periodic one-dimensional hopping model, J. Stat. Phys, 31, (1983)
[3]  
Bouchaud J. P., Comtet A., Georges A., Le-Doussal P., Classical diffusion of a particle in a one-dimensional random force field, Ann. Phys, 201, (1990)
[4]  
Bouchaud J. P., Georges A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep, 195, (1990)
[5]  
Hatano N., Nelson D. R., Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett, 77, (1996)
[6]  
Hatano N., Nelson D. R., Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B, 56, (1997)
[7]  
Shnerb N. M., Nelson D. R., Winding numbers, complex currents, and non-Hermitian localization, Phys. Rev. Lett, 80, (1998)
[8]  
Feinberg J., Zee A., Non-Hermitian localization and delocalization, Phys. Rev. E, 59, (1999)
[9]  
Kafri Y., Lubensky D. K., Nelson D. R., Dynamics of molecular motors and polymer translocation with sequence heterogeneity, Biophys. J, 86, (2004)
[10]  
Kafri Y., Lubensky D. K., Nelson D. R., Dynamics of molecular motors with finite processivity on heterogeneous tracks, Phys. Rev. E, 71, (2005)