Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing

被引:0
|
作者
Ali I. [1 ]
Mushtaq Z. [2 ]
Arif S. [3 ]
Algarni A.D. [4 ]
Soliman N.F. [4 ]
El-Shafai W. [5 ,6 ]
机构
[1] Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City
[2] Department of Electrical Engineering, Riphah International University, Islamabad
[3] Department of Mechanical Engineering, HITEC University, Taxila Cantt., Taxila
[4] Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh
[5] Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[6] Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh
来源
关键词
crop classification; dimensionality reduction; edge preserving feature; Hyperspectral imaging; visible and near-infrared;
D O I
10.32604/csse.2023.034374
中图分类号
学科分类号
摘要
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel. The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system. In this study, a unique pixel-based approach was designed to improve the crops' classification accuracy by using the edge-preserving features (EPF) and principal component analysis (PCA) in conjunction. The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI. In the second step, this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information. The resultant feature space (PCA-EPF) demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost. The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF. The classification performance evaluation was measured in terms of individual class accuracy, overall accuracy, average accuracy, and Cohen kappa factor. The proposed scheme achieved greater than 90 % results for all the performance evaluation metrics. The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range. The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods. © 2023 Authors. All rights reserved.
引用
收藏
页码:303 / 319
页数:16
相关论文
共 50 条
  • [41] CNN with coefficient of variation-based dimensionality reduction for hyperspectral remote sensing images classification
    Zhang K.
    Hei B.
    Zhou Z.
    Li S.
    Hei, Baoqin (heibq@csu.ac.cn), 2018, Science Press (22): : 87 - 96
  • [42] Efficient ELM-Based Techniques for the Classification of Hyperspectral Remote Sensing Images on Commodity GPUs
    Lopez-Fandino, Javier
    Quesada-Barriuso, Pablo
    Heras, Dora B.
    Argueello, Francisco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2884 - 2893
  • [43] Augmented Associative Learning-Based Domain Adaptation for Classification of Hyperspectral Remote Sensing Images
    Chen, Min
    Ma, Li
    Wang, Wenjin
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 6236 - 6248
  • [44] Incremental classification algorithm of hyperspectral remote sensing images based on spectral-spatial information
    Wang, Junshu
    Jiang, Nan
    Zhang, Guoming
    Li, Yang
    Lü, Heng
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2015, 44 (09): : 1003 - 1013
  • [45] Spectral perturbation method for deep learning-based classification of remote sensing hyperspectral images
    Madani, Hadis
    McIsaac, Kenneth
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [46] Hyperspectral Remote Sensing Images Terrain Classification Based on LDA and 2D-CNN
    Liu, Jing
    Li, Yang
    Wu, Meiyi
    Liu, Yi
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 157 - 164
  • [47] Fine Classification of Typical Farms in Southern China Based on Airborne Hyperspectral Remote Sensing Images
    Hu, Xin
    Zhong, Yanfei
    Luo, Chang
    Wei, Lifei
    2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 129 - 132
  • [48] Classification of hyperspectral remote-sensing images using discriminative linear projections
    Weizman, Lior
    Goldberger, Jacob
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (21) : 5605 - 5617
  • [49] Hyperspectral Remote Sensing Images Classification Using Fully Convolutional Neural Network
    Tun, Nyan Linn
    Gavrilov, Alexander
    Tun, Naing Min
    Trieu, Do Minh
    Aung, Htet
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2166 - 2170
  • [50] A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images
    Chen, Huayue
    Chen, Ye
    Wang, Qiuyue
    Chen, Tao
    Zhao, Huimin
    SENSORS, 2022, 22 (22)