Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing

被引:0
|
作者
Ali I. [1 ]
Mushtaq Z. [2 ]
Arif S. [3 ]
Algarni A.D. [4 ]
Soliman N.F. [4 ]
El-Shafai W. [5 ,6 ]
机构
[1] Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City
[2] Department of Electrical Engineering, Riphah International University, Islamabad
[3] Department of Mechanical Engineering, HITEC University, Taxila Cantt., Taxila
[4] Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh
[5] Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[6] Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh
来源
关键词
crop classification; dimensionality reduction; edge preserving feature; Hyperspectral imaging; visible and near-infrared;
D O I
10.32604/csse.2023.034374
中图分类号
学科分类号
摘要
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel. The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system. In this study, a unique pixel-based approach was designed to improve the crops' classification accuracy by using the edge-preserving features (EPF) and principal component analysis (PCA) in conjunction. The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI. In the second step, this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information. The resultant feature space (PCA-EPF) demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost. The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF. The classification performance evaluation was measured in terms of individual class accuracy, overall accuracy, average accuracy, and Cohen kappa factor. The proposed scheme achieved greater than 90 % results for all the performance evaluation metrics. The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range. The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods. © 2023 Authors. All rights reserved.
引用
收藏
页码:303 / 319
页数:16
相关论文
共 50 条
  • [21] Hyperspectral remote sensing images terrain classification in DCT SRDA subspace
    Liu Jing
    Liu Yi
    The Journal of China Universities of Posts and Telecommunications, 2015, 22 (01) : 65 - 71
  • [22] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    Science China(Technological Sciences), 2013, 56 (04) : 980 - 988
  • [23] Hyperspectral remote sensing images terrain classification in DCT SRDA subspace
    Jing, Liu
    Yi, Liu
    Journal of China Universities of Posts and Telecommunications, 2015, 22 (01): : 65 - 71
  • [24] Extreme learning machines for soybean classification in remote sensing hyperspectral images
    Moreno, Ramon
    Corona, Francesco
    Lendasse, Amaury
    Grana, Manuel
    Galvao, Lenio S.
    NEUROCOMPUTING, 2014, 128 : 207 - 216
  • [25] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Wang Ke
    Gu XingFa
    Yu Tao
    Meng QingYan
    Zhao LiMin
    Feng Li
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (04) : 980 - 988
  • [26] DCT MFA Subspace Hyperspectral Remote Sensing Images Terrain Classification
    Liu, Jing
    Li, Meng-yan
    Liu, Yi
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [27] Improved Sequential Search Algorithms for Classification in Hyperspectral Remote Sensing Images
    Nakariyakul, Songyot
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2014, 9273
  • [28] Support vector machines for classification of hyperspectral remote-sensing images
    Melgani, F
    Bruzzone, L
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 506 - 508
  • [29] Classification methods for hyperspectral remote sensing images with weak texture features
    Wang, Yong
    Gu, Mengyu
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)
  • [30] Semi-supervised classification method for hyperspectral remote sensing images
    Gomez-Chova, L
    Calpe, J
    Camps-Valls, G
    Martín, JD
    Soria, E
    Vila, J
    Alonso-Chorda, L
    Moreno, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1776 - 1778