State of Charge Estimation in Batteries for Electric Vehicle Based on Levenberg-Marquardt Algorithm and Kalman Filter

被引:2
作者
Huang, Qian [1 ]
Li, Junting [1 ]
Xu, Qingshan [2 ]
He, Chao [1 ]
Yang, Chenxi [1 ]
Cai, Li [1 ]
Xu, Qipin [3 ]
Xiang, Lihong [1 ]
Zou, Xiaojiang [4 ]
Li, Xiaochuan [5 ]
机构
[1] Chongqing Three Gorges Univ, Sch Elect & Informat Engn, Chongqing 404100, Peoples R China
[2] Southeast Univ, Sch Elect Engn, Nanjing 211189, Peoples R China
[3] State Grid Elect Power Res Inst, Nanjing 211100, Peoples R China
[4] Chongqing Andao Cheng Automobile Technol Ltd, Chongqing 404130, Peoples R China
[5] Chongqing Hang Ying Automobile Mfg Ltd, Chongqing 404100, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2024年 / 15卷 / 09期
关键词
lithium batteries; State of Charge (SOC); Levenberg-Marquardt Algorithm (LMA); Extended Kalman Filter (EKF); parameter identification; electric vehicles;
D O I
10.3390/wevj15090391
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new optimization method for estimating the State of Charge (SOC) of battery charge state is proposed. This method incorporates the Levenberg-Marquardt Algorithm (LMA) for online parameter identification and the Extended Kalman Filter (EKF) for SOC. On the one hand, the LMA efficiently alleviates the 'Data saturation' problem experienced by least squares methods by dynamically adjusting weights of data. On the other hand, the EKF improves the robustness and adaptability of SOC estimation. Simulation results under Hybrid Pulse Power Characteristic (HPPC) conditions demonstrate that this new approach offers superior performance in SOC estimation in batteries for electric vehicles compared to existing methods, with better tracking of the true SOC curve, reduced estimation error, and improved convergence.
引用
收藏
页数:18
相关论文
共 23 条
  • [1] State-of-Charge Estimation of Lithium-Ion Battery Using Square Root Spherical Unscented Kalman Filter (Sqrt-UKFST) in Nanosatellite
    Aung, Htet
    Low, Kay Soon
    Goh, Shu Ting
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (09) : 4774 - 4783
  • [2] Estimating State of Charge for xEV Batteries Using 1D Convolutional Neural Networks and Transfer Learning
    Bhattacharjee, Arnab
    Verma, Ashu
    Mishra, Sukumar
    Saha, Tapan K.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (04) : 3123 - 3135
  • [3] Ohm's Law + Kirchhoff's Current Law = Better AI: Neural-Network Processing Done in Memory with Analog Circuits will Save Energy
    Burr G.W.
    Sebastian A.
    Ando T.
    Haensch W.
    [J]. IEEE Spectrum, 2021, 58 (12) : 44 - 49
  • [4] Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model
    Gao, Yizhao
    Liu, Kailong
    Zhu, Chong
    Zhang, Xi
    Zhang, Dong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (03) : 2684 - 2696
  • [5] Improved Kernel Recursive Least Squares Algorithm Based Online Prediction for Nonstationary Time Series
    Guo, Jinhua
    Chen, Hao
    Chen, Songhang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1365 - 1369
  • [6] Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures
    Jaguemont, Joris
    Boulon, Loic
    Dube, Yves
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (01) : 1 - 14
  • [7] Research on Optimal Scheduling Method of Hybrid Energy Storage System Considering Health State of Echelon-Use Lithium-Ion Battery
    Li, Xiangjun
    Ma, Rui
    Yan, Ning
    Wang, Shangxing
    Hui, Dong
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (08)
  • [8] Vision-Based Autonomous Landing of a Hybrid Robot on a Powerline
    Li, Zhishuo
    Tian, Yunong
    Yang, Guodong
    Li, En
    Zhang, Yanfeng
    Chen, Minghao
    Liang, Zize
    Tan, Min
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] On battery state estimation algorithms for electric ship applications
    Misyris, George S.
    Marinopoulos, Antonios
    Doukas, Dimitrios I.
    Tengner, Tomas
    Labridis, Dimitris P.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2017, 151 : 115 - 124
  • [10] Higher Order Sliding-Mode Observers for State-of-Charge and State-of-Health Estimation of Lithium-Ion Batteries
    Obeid, Hussein
    Petrone, Raffaele
    Chaoui, Hicham
    Gualous, Hamid
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 4482 - 4492