Multi-scale attention in attention neural network for single image deblurring☆

被引:0
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Single image super-resolution using multi-scale feature enhancement attention residual network
    Pandey, Garima
    Ghanekar, Umesh
    OPTIK, 2021, 231
  • [32] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [33] A Medical Image Segmentation Network with Multi-Scale and Dual-Branch Attention
    Zhu, Cancan
    Cheng, Ke
    Hua, Xuecheng
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [34] Multi-scale Image Blind Deblurring Network for Dynamic Scenes
    Tang S.
    Wan S.-D.
    Xie X.-Z.
    Yang S.-L.
    Huang R.
    Gu J.
    Zheng W.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (09):
  • [35] Enhanced multi-scale feature progressive network for image Deblurring
    Zhijun Yu
    Guodong Wang
    Xinyue Zhang
    Ziying Wang
    Multimedia Tools and Applications, 2023, 82 : 21147 - 21159
  • [36] Image Interpolation Using Multi-Scale Attention-Aware Inception Network
    Ji, Jiahuan
    Zhong, Baojiang
    Ma, Kai-Kuang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9413 - 9428
  • [37] Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
    Haixing Li
    Haibo Luo
    Wang Huan
    Zelin Shi
    Chongnan Yan
    Lanbo Wang
    Yueming Mu
    Yunpeng Liu
    Neural Computing and Applications, 2021, 33 : 11589 - 11602
  • [38] Multi-Scale Frequency Enhancement Network for Blind Image Deblurring
    Xiang, Yawen
    Zhou, Heng
    Zhang, Xi
    Li, Chengyang
    Li, Zhongbo
    Xie, Yongqiang
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [39] Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
    Li, Haixing
    Luo, Haibo
    Huan, Wang
    Shi, Zelin
    Yan, Chongnan
    Wang, Lanbo
    Mu, Yueming
    Liu, Yunpeng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18) : 11589 - 11602
  • [40] Monocular Image Depth Estimation Based on Multi-Scale Attention Oriented Network
    Liu J.
    Wen J.
    Liang Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (12): : 52 - 62