Multi-scale attention in attention neural network for single image deblurring☆

被引:0
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-Scale Attention Network for Image Cropping
    Lian, Tianpei
    Xian, Ke
    Pan, Zhiyu
    Hong, Chaoyi
    Cao, Zhiguo
    Zhong, Weicai
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2640 - 2645
  • [2] Multi-scale attention network for image inpainting
    Qin, Jia
    Bai, Huihui
    Zhao, Yao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 204
  • [3] Multi-scale recurrent attention gated fusion network for single image dehazing
    Zhang, Xiangfen
    Yang, Shuo
    Zhang, Qingyi
    Yuan, Feiniu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [4] Multi-Scale Attention Generative Adversarial Network for Single Image Rain Removal
    Wang, Wanwei
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (02) : 436 - 447
  • [5] Multi-Scale Attention Generative Adversarial Network for Single Image Rain Removal
    Pattern Recognition and Image Analysis, 2022, 32 : 436 - 447
  • [6] Deep Neural Network Joint Multi-Scale Attention for Remote Sensing Image Colorization
    Wang, Yun
    Jiang, Qian
    Jin, Xin
    Lee, Shin-Jye
    Feng, Jianan
    Zhou, Ding
    Zhang, Ya
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [7] Multi-Scale Convolution Attention Neural Network for Gesture Recognition
    Ji, Penghui
    Cao, Chongli
    Zhang, Hang
    Li, Qi
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 421 - 425
  • [8] Multi-scale cascaded attention network for underwater image enhancement
    Zhao, Gaoli
    Wu, Yuheng
    Zhou, Ling
    Zhao, Wenyi
    Zhang, Weidong
    FRONTIERS IN MARINE SCIENCE, 2025, 12
  • [9] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [10] MSANet: Multi-scale attention networks for image classification
    Ping Cao
    Fangxin Xie
    Shichao Zhang
    Zuping Zhang
    Jianfeng Zhang
    Multimedia Tools and Applications, 2022, 81 : 34325 - 34344