Multi-scale attention in attention neural network for single image deblurring☆

被引:0
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 86 条
[1]  
[Anonymous], 2006, 2006 IEEE COMP SOC C
[2]  
Ba J, 2014, ACS SYM SER
[3]  
Behjati P, 2020, Arxiv, DOI arXiv:2012.04578
[4]   Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring [J].
Cai, Jianrui ;
Zuo, Wangmeng ;
Zhang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :6885-6897
[5]  
Cao JM, 2020, Arxiv, DOI arXiv:2006.12030
[6]   A Neural Approach to Blind Motion Deblurring [J].
Chakrabarti, Ayan .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :221-235
[7]  
Chen HY, 2021, Arxiv, DOI arXiv:2104.09497
[8]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[9]   Unsupervised Blind Image Deblurring Based on Self-Enhancement [J].
Chen, Lufei ;
Tian, Xiangpeng ;
Xiong, Shuhua ;
Lei, Yinjie ;
Ren, Chao .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, :25691-25700
[10]   Rethinking Coarse-to-Fine Approach in Single Image Deblurring [J].
Cho, Sung-Jin ;
Ji, Seo-Won ;
Hong, Jun-Pyo ;
Jung, Seung-Won ;
Ko, Sung-Jea .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4621-4630