Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory

被引:5
作者
Shankar, G. [1 ]
Maciejko, Joseph [1 ,2 ,3 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2E1, Canada
[3] Univ Alberta, Quantum Horizons Alberta, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM GAUGE-THEORIES; LOOP AVERAGE; EQUATIONS; UNITARY; QCD;
D O I
10.1103/PhysRevLett.133.146601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hyperbolic lattices are a new type of synthetic quantum matter emulated in circuit quantum electrodynamics and electric-circuit networks, where particles coherently hop on a discrete tessellation of two-dimensional negatively curved space. While real-space methods and a reciprocal-space hyperbolic band theory have been recently proposed to analyze the energy spectra of those systems, discrepancies between the two sets of approaches remain. In this work, we reconcile those approaches by first establishing an equivalence between hyperbolic band theory and U(N) topological Yang-Mills theory on higher-genus Riemann surfaces. We then show that moments of the density of states of hyperbolic tightbinding models correspond to expectation values of Wilson loops in the quantum gauge theory and become exact in the large-N limit.
引用
收藏
页数:9
相关论文
共 90 条
[1]  
aps, ABOUT US, DOI [10.1103/PhysRevLett.133.146601, DOI 10.1103/PHYSREVLETT.133.146601]
[2]   Holography on tessellations of hyperbolic space [J].
Asaduzzaman, Muhammad ;
Catterall, Simon ;
Hubisz, Jay ;
Nelson, Roice ;
Unmuth-Yockey, Judah .
PHYSICAL REVIEW D, 2020, 102 (03)
[3]  
Ashcroft N.D., 1976, CENGAGE LEARNING, V1, DOI [10.1002/piuz.19780090109, DOI 10.1002/PIUZ.19780090109]
[4]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[5]   Aperiodic spin chains at the boundary of hyperbolic tilings [J].
Basteiro, Pablo ;
Das, Rathindra Nath ;
Di Giulio, Giuseppe ;
Erdmenger, Johanna .
SCIPOST PHYSICS, 2023, 15 (05)
[6]   Breitenlohner-Freedman Bound on Hyperbolic filings [J].
Basteiro, Pablo ;
Dusel, Felix ;
Erdmenger, Johanna ;
Herdt, Dietmar ;
Hinrichsen, Haye ;
Meyer, Rene ;
Wuerzburg, Manuel Schrauth Julius-Maximilians-Universitaet .
PHYSICAL REVIEW LETTERS, 2023, 130 (09)
[7]   Towards explicit discrete holography: Aperiodic spin chains from hyperbolic tilings [J].
Basteiro, Pablo ;
Di Giulio, Giuseppe ;
Erdmenger, Johanna ;
Karl, Jonathan ;
Meyer, Rene ;
Xian, Zhuo-Yu .
SCIPOST PHYSICS, 2022, 13 (05)
[8]   Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models [J].
Bienias, Przemyslaw ;
Boettcher, Igor ;
Belyansky, Ron ;
Kollar, Alicia J. ;
Gorshkov, Alexey, V .
PHYSICAL REVIEW LETTERS, 2022, 128 (01)
[9]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[10]   QUANTUM YANG-MILLS THEORY ON ARBITRARY SURFACES [J].
BLAU, M ;
THOMPSON, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (16) :3781-3806