Environmental ammonia analysis based on exclusive nitrification by nitrifying biofilm screened from natural bioresource

被引:4
作者
Wang L. [1 ]
Zhou W. [1 ]
Zhang M. [1 ]
Zheng Z. [1 ]
Zhao S. [1 ]
Xing C. [2 ]
Jia J. [1 ]
Liu C. [1 ]
机构
[1] School of Biotechnology and Health Sciences, Wuyi University, Jiangmen
[2] UQ Dow Center, School of Chemical Engineering, The University of Queensland, St Lucia
基金
中国国家自然科学基金;
关键词
Ammonia; Analytical technologies; Biosensing; Nitrification; Nitrifying biofilm reactor;
D O I
10.1016/j.chemosphere.2023.139221
中图分类号
学科分类号
摘要
Biofilm-based biological nitrification is widely used for ammonia removal, while hasn't been explored for ammonia analysis. The stumbling block is the coexist of nitrifying and heterotrophic microbes in real environment resulting in non-specific sensing. Herein, an exclusive ammonia sensing nitrifying biofilm was screened from natural bioresource, and a bioreaction-detection system for the on-line analysis of environmental ammonia based on biological nitrification was reported. The nitrifying microbes were aggregated into a nitrifying biofilm through a result-oriented bioresource enrichment strategy. The predominant nitrifying population and progressive surface reaction in the plug flow bioreactor led to the exclusive and exhaustive ammonia biodegradation for the establishment of a novel analytical method. The on-line ammonia monitoring prototype achieved complete biodegradation for determining ammonium nitrogen within 5 min and showed exceptional reliability in long-term real sample measurements without frequent calibration. This work offers a low-threshold natural screening paradigm for developing sustainable bioresource-based analytical technologies. © 2023
引用
收藏
相关论文
共 55 条
[1]  
Aryal B., Gurung R., Camargo A.F., Fongaro G., Treichel H., Mainali B., Angove M.J., Ngo H.H., Guo W., Puadel S.R., Nitrous oxide emission in altered nitrogen cycle and implications for climate change, Environ. Pollut., 314, (2022)
[2]  
Asnicar F., Berry S.E., Valdes A.M., Nguyen L.H., Piccinno G., Drew D.A., Leeming E., Gibson R., Le Roy C., Al Khatib H., Francis L., Mazidi M., Mompeo O., Valles-Colomer M., Tett A., Beghini F., Dubois L., Bazzani D., Thomas A.M., Mirzayi C., Khleborodova A., Oh S., Hine R., Bonnett C., Capdevila J., Danzanvilliers S., Giordano F., Geistlinger L., Waldron L., Davies R., Hadjigeorgiou G., Wolf J., Ordovas J.M., Gardner C., Franks P.W., Chan A., Huttenhower C., Spector T.D., Segata N., Microbiom
[3]  
Chen Y., Guo G., Li Y.Y., A review on upgrading of the anammox-based nitrogen removal processes: performance, stability, and control strategies, Bioresour. Technol., 364, (2022)
[4]  
Cheng S., Lin Z., Sun Y., Li H., Ren X., Fast and simultaneous detection of dissolved BOD and nitrite in wastewater by using bioelectrode with bidirectional extracellular electron transport, Water Res., 213, (2022)
[5]  
Choi O., Hu Z., Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, Environ. Sci. Technol., 42, 12, pp. 4583-4588, (2008)
[6]  
Di H.J., Cameron K.C., Shen J.P., Winefield C.S., O Callaghan M., Bowatte S., He J.Z., Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils, Nat. Geosci., 2, 9, pp. 621-624, (2009)
[7]  
Dincer C., Bruch R., Costa-Rama E., Fernandez-Abedu M.T., Merkoci A., Manz A., Urban G.A., Guder F., Disposable sensors in diagnostics, food, and environmental monitoring, Adv. Mater., 31, 30, (2019)
[8]  
Ding J., Qin W., Recent advances in potentiometric biosensors, Trends Anal. Chem., 124, (2020)
[9]  
Ding L., Ding J.W., Ding B.J., Qin W., Solid-contact potentiometric sensor for the determination of total ammonia nitrogen in seawater, Int. J. Electrochem. Sci., 12, pp. 3296-3308, (2017)
[10]  
Do M.H., Ngo H.H., Guo W.S., Chang S.W., Nguyen D.D., Liu Y.W., Varjani S., Kumar M., Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review, Sci. Total Environ., 712, (2020)