共 53 条
[31]
Hamm J., Lee D.D., Grassmann discriminant analysis: a unifying view on subspace-based learning, Proc. 25th. Int. Conf. Mach. Learn., pp. 376-383, (2008)
[32]
Gong B., Shi Y., Sha F., Grauman K., Geodesic flow kernel for unsupervised domain adaptation,”, Proc of IEEE Conf. On Comput. Vis. Pattern. Recognit, pp. 2066-2073, (2012)
[33]
Wang J., Feng W., Chen Y., Et al., Visual domain adaptation with manifold embedded distribution alignment, Proc 26th ACM Int. Conf. Multimedia, pp. 402-410, (2018)
[34]
Long M., Wang J J., Ding G., Sun J., Et al., Transfer feature learning with joint distribution adaptation, Proc of IEEE. Int. Conf. On Comput. Vis., pp. 2200-2207, (2013)
[35]
Wang J., Chen Y., Hao S., Et al., Balanced distribution adaptation for transfer learning, Proc of IEEE. Int. Conf. On Data Mining (ICDM), pp. 1129-1134, (2017)
[36]
Zheng W., Lu B., Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks, IEEE. Trans. Auton. Ment. Dev., 7, 3, pp. 162-175, (2015)
[37]
Zheng W., Liu W., Lu Y., Lu B., Cichocki A., EmotionMeter: a multimodal framework for recognizing human emotions, IEEE Trans. Cybern., 49, 3, pp. 1110-1122, (2019)
[38]
Koelstra S., Muhl C., Soleymani M., Lee J.-S., Et al., DEAP: a database for emotion analysis
[39]
using physiological signals, IEEE. Trans. Affect. Comput, 3, 1, pp. 18-31, (2012)
[40]
Duan R., Zhu J., Lu B., Differential entropy feature for EEG-based emotion classification, Proc. 6th. Int. IEEE/EMBS Conf. Neural. Eng (NER), pp. 81-84, (2013)