Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

被引:0
作者
Kubu, Ondrej [1 ]
Reyes, Daniel [2 ,3 ]
Tempesta, Piergiulio [2 ,3 ]
Tondo, Giorgio [4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Prague, Czech Republic
[2] Inst Ciencias Matemat ICMAT, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
[4] Univ Trieste, Dipartimento Matemat Informat & Geosci, Trieste, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2301期
关键词
integrable systems; Haantjes geometry; magnetic systems; St & auml; ckel systems; SEPARATION; VARIABLES;
D O I
10.1098/rspa.2024.0076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying St & auml;ckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.
引用
收藏
页数:24
相关论文
共 47 条
  • [41] The two-dimensional three-body problem in the large magnetic field limit is integrable
    Botero, A.
    Leyvraz, F.
    PHYSICS LETTERS A, 2016, 380 (27-28) : 2211 - 2218
  • [42] Pseudo-solitonic magnetic flows associated with nonlinear integrable systems in the Minkowski 3-space
    Demirkol, Ridvan Cem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4640 - 4659
  • [43] On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals
    Bertrand, S.
    Snobl, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (19)
  • [44] Expansion around the mean field in quantum magnetic systems
    de Pasquale, F
    Giampaolo, SM
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 125 - 142
  • [45] Expansion Around the Mean Field in Quantum Magnetic Systems
    F. de Pasquale
    S. M. Giampaolo
    Journal of Statistical Physics, 2004, 115 : 125 - 142
  • [46] Dynamic motion analysis of magnetic particles in microfluidic systems under an external gradient magnetic field
    Cao, Quanliang
    Liu, Mengyu
    Wang, Zhen
    Han, Xiaotao
    Li, Liang
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (02)
  • [47] Magnetic Field Application and its Potential in Water and Wastewater Treatment Systems
    Zaidi, Nur Syamimi
    Sohaili, Johan
    Muda, Khalida
    Sillanpaa, Mika
    SEPARATION AND PURIFICATION REVIEWS, 2014, 43 (03) : 206 - 240