Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

被引:0
作者
Kubu, Ondrej [1 ]
Reyes, Daniel [2 ,3 ]
Tempesta, Piergiulio [2 ,3 ]
Tondo, Giorgio [4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Prague, Czech Republic
[2] Inst Ciencias Matemat ICMAT, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
[4] Univ Trieste, Dipartimento Matemat Informat & Geosci, Trieste, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2301期
关键词
integrable systems; Haantjes geometry; magnetic systems; St & auml; ckel systems; SEPARATION; VARIABLES;
D O I
10.1098/rspa.2024.0076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying St & auml;ckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.
引用
收藏
页数:24
相关论文
共 47 条
  • [31] Integrable systems in magnetic fields: the generalized parabolic cylindrical case
    Kubu, O.
    Marchesiello, A.
    Snobl, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (23)
  • [32] Full-field drift Hamiltonian particle orbits in 3D geometry
    Cooper, W. A.
    Graves, J. P.
    Brunner, S.
    Isaev, M. Yu
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (02)
  • [33] New integrable two-centre problem on sphere in Dirac magnetic field
    Veselov, A. P.
    Ye, Y.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (11) : 3105 - 3119
  • [34] Integrability in string/field theories and Hamiltonian flows in the space of physical systems
    Mironov, AD
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) : 814 - 827
  • [35] Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems
    A. D. Mironov
    Theoretical and Mathematical Physics, 2003, 135 : 814 - 827
  • [36] Applications of Nijenhuis Geometry V: Geodesic Equivalence and Finite-Dimensional Reductions of Integrable Quasilinear Systems
    Bolsinov, Alexey V.
    Konyaev, Andrey Yu.
    Matveev, Vladimir S.
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (02)
  • [37] Applications of Nijenhuis Geometry V: Geodesic Equivalence and Finite-Dimensional Reductions of Integrable Quasilinear Systems
    Alexey V. Bolsinov
    Andrey Yu. Konyaev
    Vladimir S. Matveev
    Journal of Nonlinear Science, 2024, 34
  • [38] New classes of quadratically integrable systems in magnetic fields: The generalized cylindrical and spherical cases
    Kubu, Ondrej
    Marchesiello, Antonella
    Snobl, Libor
    ANNALS OF PHYSICS, 2023, 451
  • [39] Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin
    Gorsky, A
    Gukov, S
    Mironov, A
    NUCLEAR PHYSICS B, 1998, 517 (1-3) : 409 - 461
  • [40] Classical R-matrix theory for bi-Hamiltonian field systems
    Blaszak, Maciej
    Szablikowski, Blazej M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (40)