How Much Data Is Needed for Channel Knowledge Map Construction?
被引:1
|
作者:
Xu, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R ChinaSoutheast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Xu, Xiaoli
[1
]
Zeng, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Purple Mt Labs, Nanjing 211111, Peoples R ChinaSoutheast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Zeng, Yong
[1
,2
]
机构:
[1] Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
Predictive models;
Channel estimation;
Data models;
Wireless communication;
Shadow mapping;
Correlation;
Prediction algorithms;
Channel gain map (CGM);
environment-aware communication;
spatial channel prediction;
parameter estimation;
average mean square error;
MODEL;
D O I:
10.1109/TWC.2024.3397964
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Channel knowledge map (CKM) has been recently proposed to enable environment-aware communications by utilizing historical or simulation generated wireless channel data. This paper studies the construction of one particular type of CKM, namely channel gain map (CGM), by using a finite number of measurements or simulation-generated data, with model-based spatial channel prediction. We try to answer the following question: How much data is sufficient for CKM construction? To this end, we first derive the average mean square error (AMSE) of the channel gain prediction as a function of the sample density of data collection in offline CGM construction, as well as the number of data points used in online spatial channel gain prediction. To model the spatial variation of the wireless environment within each cell, we divide the CGM into subregions and estimate the channel parameters from the local data within each subregion. The parameter estimation error and the channel prediction error based on estimated channel parameters are derived as functions of the number of data points within the subregion. The analytical results may guide the CGM construction and utilization by determining the required spatial sample density for offline data collection and the number of data points to be used for online channel prediction, so that the desired level of channel prediction accuracy is guaranteed.
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Purple Mt Labs, Nanjing 211100, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Jin, Zhenzhou
You, Li
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Purple Mt Labs, Nanjing 211100, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
You, Li
Wang, Jue
论文数: 0引用数: 0
h-index: 0
机构:
Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
Nantong Res Inst Adv Commun Technol, Nantong 226019, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Wang, Jue
Xia, Xiang-Gen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USASoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Xia, Xiang-Gen
Gao, Xiqi
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Purple Mt Labs, Nanjing 211100, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
机构:
Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
Ge, Hui
Jin, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
Jin, Fan
Li, Junfang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Dept Chem Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R ChinaChinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
Li, Junfang
Wu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
Univ Sci & Technol China, Dept Chem Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R ChinaChinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Wu, Di
Qiu, Yuelong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Qiu, Yuelong
Zeng, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Pervas Commun Res Ctr, Purple Mt Labs, Nanjing 211111, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
Zeng, Yong
Wen, Fuxi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R ChinaSoutheast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
Hamad Bin Khalifa Univ, Doha, QatarMediaTek Inc, Hsinchu 30078, Taiwan