Non-equilibrium thermodynamics in f(R, T) gravity and dark energy

被引:0
作者
Akbarpour, Sudabeh [1 ]
Sefiedgar, Akram S. [1 ]
Rashidi, Narges [1 ]
机构
[1] Univ Mazandaran, Fac Sci, Dept Theoret Phys, POB 47416-95447, Babolsa, Iran
关键词
f(R; T); gravity; thermodynamics; dark energy; matter creation; PROBE WMAP OBSERVATIONS; COSMOLOGICAL PARTICLE-PRODUCTION; HUBBLE-SPACE-TELESCOPE; GALAXY REDSHIFT SURVEY; MATTER CREATION; BULK VISCOSITY; UNIVERSE; DISCOVERIES; CONSTRAINTS; DENSITY;
D O I
10.1088/1402-4896/ad8fdf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modifying general relativity may be a suitable approach to solve the dark energy problem. Among the various theories of modified gravity, we consider the f(R, T) gravity, in which R is the Ricci scalar and T is the trace of the energy-momentum tensor. As an intriguing property, the conservation equation does not hold in f(R, T) gravity. It means that the divergence of the energy-momentum tensor does not vanish. Using the formalism of irreversible thermodynamics of open systems in the presence of matter creation or matter annihilation, one can explore the physical interpretation of non-conservative energy-momentum tensor. Comparing the non-conservative energy-momentum tensor in f(R, T) gravity with the one in an irreversible open system, one may conclude that there may be a flow of energy from the gravitational sector to the matter sector, which may result in matter creation. In this paper, we study the f(R, T) gravity in the presence of the ordinary matter and the scalar field from the viewpoint of the irreversible thermodynamics of open systems to explore the possibility of matter creation. The matter creation rate, the creation pressure, the entropy production rate and the temperature evolution can be obtained. This possible matter creation in f(R, T) gravity can be considered as a component of energy which may play the role of dark energy in the recent accelerated expanding phase of the Universe.
引用
收藏
页数:18
相关论文
共 59 条
[1]   Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing [J].
Abbott, T. M. C. ;
Abdalla, F. B. ;
Alarcon, A. ;
Aleksic, J. ;
Allam, S. ;
Allen, S. ;
Amara, A. ;
Annis, J. ;
Asorey, J. ;
Avila, S. ;
Bacon, D. ;
Balbinot, E. ;
Banerji, M. ;
Banik, N. ;
Barkhouse, W. ;
Baumer, M. ;
Baxter, E. ;
Bechtol, K. ;
Becker, M. R. ;
Benoit-Levy, A. ;
Benson, B. A. ;
Bernstein, G. M. ;
Bertin, E. ;
Blazek, J. ;
Bridle, S. L. ;
Brooks, D. ;
Brout, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Busha, M. T. ;
Campos, A. ;
Capozzi, D. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Chen, N. ;
Childress, M. ;
Choi, A. ;
Conselice, C. ;
Crittenden, R. ;
Crocce, M. ;
Cunha, C. E. ;
D'Andrea, C. B. ;
da Costa, L. N. ;
Das, R. ;
Davis, T. M. ;
Davis, C. .
PHYSICAL REVIEW D, 2018, 98 (04)
[2]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Relativistic distortions in the large-scale clustering of SDSS-III BOSS CMASS galaxies [J].
Alam, Shadab ;
Zhu, Hongyu ;
Croft, Rupert A. C. ;
Ho, Shirley ;
Giusarma, Elena ;
Schneider, Donald P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (03) :2822-2833
[4]   Constraints on cold dark matter accelerating cosmologies and cluster formation [J].
Basilakos, S. ;
Lima, J. A. S. .
PHYSICAL REVIEW D, 2010, 82 (02)
[5]   Dynamically avoiding fine-tuning the cosmological constant: the "Relaxed Universe" [J].
Bauer, Florian ;
Sola, Joan ;
Stefancic, Hrvoje .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (12)
[6]   First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Preliminary maps and basic results [J].
Bennett, CL ;
Halpern, M ;
Hinshaw, G ;
Jarosik, N ;
Kogut, A ;
Limon, M ;
Meyer, SS ;
Page, L ;
Spergel, DN ;
Tucker, GS ;
Wollack, E ;
Wright, EL ;
Barnes, C ;
Greason, MR ;
Hill, RS ;
Komatsu, E ;
Nolta, MR ;
Odegard, N ;
Peiris, HV ;
Verde, L ;
Weiland, JL .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (01) :1-27
[7]   Exploring the cosmological model in f (R, TO) gravity with observational constraints [J].
Bhardwaj, Vinod Kumar ;
Garg, Priyanka .
NEW ASTRONOMY, 2024, 105
[8]   CAUSAL UNIVERSE [J].
BROUT, R ;
ENGLERT, F ;
GUNZIG, E .
GENERAL RELATIVITY AND GRAVITATION, 1979, 10 (01) :1-6
[9]   COSMOLOGICAL ORIGIN OF THE GRAND-UNIFICATION MASS SCALE [J].
BROUT, R ;
ENGLERT, F ;
SPINDEL, P .
PHYSICAL REVIEW LETTERS, 1979, 43 (06) :417-420
[10]   COSMOGENESIS AND THE ORIGIN OF THE FUNDAMENTAL LENGTH SCALE [J].
BROUT, R ;
ENGLERT, F ;
FRERE, JM ;
GUNZIG, E ;
NARDONE, P ;
TRUFFIN, C .
NUCLEAR PHYSICS B, 1980, 170 (02) :228-264