Prediction of the Gleason Score of Prostate Cancer Patients Using 68Ga-PSMA-PET/CT Radiomic Models

被引:0
作者
Vosoughi, Zahra [1 ]
Emami, Farshad [2 ]
Vosoughi, Habibeh [3 ]
Hajianfar, Ghasem [4 ]
Hamzian, Nima [1 ]
Geramifar, Parham [3 ]
Zaidi, Habib [4 ,5 ,6 ,7 ]
机构
[1] Shahid Sadoughi Univ Med Sci, Sch Med, Dept Med Phys, Shohada Gomnam Blv, Yazd, Iran
[2] Imam Reza Int Univ, Razavi Hosp, Nucl Med & Mol Imaging Dept, Mashhad, Razavi Khorasan, Iran
[3] Univ Tehran Med Sci, Res Ctr Nucl Med, Tehran, Iran
[4] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9700 RB Groningen, Netherlands
[6] Univ Southern Denmark, Dept Nucl Med, DK-500 Odense, Denmark
[7] Obuda Univ, Univ Res & Innovat Ctr, Budapest, Hungary
关键词
Prostate Cancer; Ga-68-PSMA PET/CT; Radiomics; Gleason Score; CLINICALLY SIGNIFICANT; MRI;
D O I
10.1007/s40846-024-00906-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose To predict Gleason Score (GS) using radiomic features from Ga-68-PSMA-PET/CT images in primary prostate cancer. Methods 138 patients undergoing Ga-68-PSMA-PET/CT imaging were categorized based on GS, with GS above 4 + 3 as malignant and under 3 + 4 as benign tumors. radiomic features were extracted from tumors' volume of interest in both PET and CT images, using Feature Elimination with cross-validation. Fusion features were generated by combining features at the feature level; average of features (PET/CTAveFea) or concatenated features (PET/CTConFea). The performance of various models was compared using area under the curve, sensitivity and specificity. Wilcoxon test and F1-score test were used to find the best model. Predictive models were developed for CT-only, PET-only, and PET/CT feature-level fusion models. Results Random Forest achieved the highest accuracy on CT with 0.74 +/- 0.01 AUC(Mean), 0.75 +/- 0.07 sensitivity, and 0.62 +/- 0.08 specificity. Logistic regression (LR) exhibited the best predictive performance on PET images with 0.74 +/- 0.05 AUC(Mean), 0.7 +/- 0.13 sensitivity, and 0.78 +/- 0.14 specificity. The best predictive PET/CTAveFea was achieved by LR, resulting in 0.72 +/- 0.07 AUC(Mean), 0.74 +/- 0.12 sensitivity, and 0.63 +/- 0.02 specificity. In the case of PET/CTConFea, LR showed the best predictive performance with 0.78 +/- 0.08 AUC(Mean), 0.81 +/- 0.09 sensitivity, and 0.66 +/- 0.15 specificity. Conclusion The results demonstrated that radiomic models derived from Ga-68-PSMA-PET/CT images could differentiate between benign and malignant tumors based on GS.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 37 条
[1]   Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer [J].
Abdollahi, Hamid ;
Mofid, Bahram ;
Shiri, Isaac ;
Razzaghdoust, Abolfazl ;
Saadipoor, Afshin ;
Mahdavi, Arash ;
Galandooz, Hassan Maleki ;
Mahdavi, Seied Rabi .
RADIOLOGIA MEDICA, 2019, 124 (06) :555-567
[2]   Dual time point imaging of staging PSMA PET/CT quantification; spread and radiomic analyses [J].
Aksu, Aysegul ;
Topuz, Ozge Vural ;
Yilmaz, Gulsah ;
Kaya, Gamze Capa ;
Yilmaz, Burcak .
ANNALS OF NUCLEAR MEDICINE, 2022, 36 (03) :310-318
[3]   Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma [J].
Amini, Mehdi ;
Nazari, Mostafa ;
Shiri, Isaac ;
Hajianfar, Ghasem ;
Deevband, Mohammad Reza ;
Abdollahi, Hamid ;
Arabi, Hossein ;
Rahmim, Arman ;
Zaidi, Habib .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (20)
[4]  
Bagheri S., 2021 IEEE NUCL SCI S, P1, DOI [10.1109/NSS/MIC44867, DOI 10.1109/NSS/MIC44867]
[5]   Computed tomography radiomics for the prediction of thymic epithelial tumor histology, TNM stage and myasthenia gravis [J].
Bluethgen, Christian ;
Patella, Miriam ;
Euler, Andre ;
Baessler, Bettina ;
Martini, Katharina ;
von Spiczak, Jochen ;
Schneiter, Didier ;
Opitz, Isabelle ;
Frauenfelder, Thomas .
PLOS ONE, 2021, 16 (12)
[6]   Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis [J].
Chaddad, Ahmad ;
Niazi, Tamim ;
Probst, Stephan ;
Bladou, Franck ;
Anidjar, Maurice ;
Bahoric, Boris .
FRONTIERS IN ONCOLOGY, 2018, 8
[7]   Radiomic features derived from pretherapeutic MRI predict chemoradiation response in locally advanced rectal cancer [J].
Chou, Yen ;
Peng, Szu-Hsiang ;
Lin, Hsuan-Yin ;
Lan, Tien-Li ;
Jiang, Jeng-Kae ;
Liang, Wen-Yih ;
Hu, Yu-Wen ;
Wang, Ling-Wei .
JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2023, 86 (04) :399-408
[8]   Clinically significant prostate cancer detection on MRI: A radiomic shape features study [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Romeo, Valeria ;
Verde, Francesco ;
Creta, Massimiliano ;
La Rocca, Roberto ;
Longo, Nicola ;
Pace, Leonardo ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 :144-149
[9]   The role of radiomics in prostate cancer radiotherapy [J].
Delgadillo, Rodrigo ;
Ford, John C. ;
Abramowitz, Matthew C. ;
Dal Pra, Alan ;
Pollack, Alan ;
Stoyanova, Radka .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :900-912
[10]   Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions [J].
Gaudiano, Caterina ;
Mottola, Margherita ;
Bianchi, Lorenzo ;
Corcioni, Beniamino ;
Cattabriga, Arrigo ;
Cocozza, Maria Adriana ;
Palmeri, Antonino ;
Coppola, Francesca ;
Giunchi, Francesca ;
Schiavina, Riccardo ;
Fiorentino, Michelangelo ;
Brunocilla, Eugenio ;
Golfieri, Rita ;
Bevilacqua, Alessandro .
CANCERS, 2022, 14 (24)