Poor wound healing in diabetes mellitus remains a significant challenge, and targeting dysregulated macrophages plays a crucial role in its therapy. Smart wound dressings have been developed as promising therapeutic platforms to accelerate diabetic wound healing, with stimulus-responsive properties, including responding to external light, temperature, mechanical, magnetic, and electrical forces, as well as pH, reactive oxygen species, and glucose concentrations within the wound. In addition, they possess self-healing and debridement capabilities, and are able to monitor wound microenvironment and meet the demands of various diabetic wounds. Notably, smart macrophage-targeting wound dressings established on this basis are capable of multidimensionally facilitating chronic wound healing by modulating macrophage polarization, guiding their differentiation, promoting their recruitment to the wound site, and modulating their cross-talk with multiple cell types. Therefore, smart macrophage-targeting wound dressings have great therapeutic potential for diabetic wounds. This article reviews the role of macrophages in diabetic wound healing and the progress of macrophage-targeting smart wound dressings as well as their molecular mechanisms associated with macrophage regulation, aiming to provide new strategies for the clinical treatment of diabetic foot ulcers.