Comparative assessment of physics-based in silico methods to calculate relative solubilities

被引:0
作者
Suarez, Adiran Garaizar [1 ,2 ]
Goeller, Andreas H. [1 ]
Beck, Michael E. [2 ]
Gheta, Sadra Kashef Ol [2 ]
Meier, Katharina [1 ]
机构
[1] Bayer AG, Pharmaceut Struct Biol & Computat Design, Wuppertal, Germany
[2] Bayer AG, Crop Sci Data Sci, Monheim, Germany
关键词
Solubility; Free energy calculations; Physics-based approaches; AQUEOUS SOLUBILITY; FORCE-FIELD; PREDICTION; MODELS; ENERGY; DRUGS; ABSORPTION; PESTICIDES; ACCURACY; UNIFAC;
D O I
10.1007/s10822-024-00576-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Relative solubilities, i.e. whether a given molecule is more soluble in one solvent compared to others, is a critical parameter for pharmaceutical and agricultural formulation development and chemical synthesis, material science, and environmental chemistry. In silico predictions of this crucial variable can help reducing experiments, waste of solvents and synthesis optimization. In this study, we evaluate the performance of different physics-based methods for predicting relative solubilities. Our assessment involves quantum mechanics-based COSMO-RS and molecular dynamics-based free energy methods using OPLS4, the open-source OpenFF Sage, and GAFF force fields, spanning over 200 solvent-solute combinations. Our investigation highlights the important role of compound multimerization, an effect which must be accounted for to obtain accurate relative solubility predictions. The performance landscape of these methods is varied, with significant differences in precision depending on both the method used and the solute considered, thereby offering an improved understanding of the predictive power of physics-based methods in chemical research.
引用
收藏
页数:15
相关论文
共 69 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] Efficient Computation of the Total Solvation Energy of Small Molecules via the R6 Generalized Born Model
    Aguilar, Boris
    Onufriev, Alexey V.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (07) : 2404 - 2411
  • [3] Equilibrium solubility measurement of ionizable drugs - consensus recommendations for improving data quality
    Aydeef, Alex
    Fuguet, Elisabet
    Llinas, Antonio
    Rafols, Clara
    Bosch, Elisabeth
    Volgyi, Gergely
    Verbic, Tatjana
    Boldyreva, Elena
    Takacs-Novak, Krisztina
    [J]. ADMET AND DMPK, 2016, 4 (02): : 117 - 178
  • [4] In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds:: Trends, problems and solutions
    Balakin, KV
    Savchuk, NP
    Tetko, IV
    [J]. CURRENT MEDICINAL CHEMISTRY, 2006, 13 (02) : 223 - 241
  • [5] EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA
    BENNETT, CH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) : 245 - 268
  • [6] Frontiers of molecular crystal structure prediction for pharmaceuticals and functional organic materials
    Beran, Gregory J. O.
    [J]. CHEMICAL SCIENCE, 2023, 14 (46) : 13290 - 13312
  • [7] Accuracy of calculated pH-dependent aqueous drug solubility
    Bergström, CAS
    Luthman, K
    Artursson, P
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 22 (05) : 387 - 398
  • [8] pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants
    Bonin, Anne
    Montanari, Floriane
    Niederfuehr, Sebastian
    Goeller, Andreas H.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2023, 37 (03) : 129 - 145
  • [9] Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field
    Boothroyd, Simon
    Behara, Pavan Kumar
    Madin, Owen C.
    Hahn, David F.
    Jang, Hyesu
    Gapsys, Vytautas
    Wagner, Jeffrey R.
    Horton, Joshua T.
    Dotson, David L.
    Thompson, Matthew W.
    Maat, Jessica
    Gokey, Trevor
    Wang, Lee-Ping
    Cole, Daniel J.
    Gilson, Michael K.
    Chodera, John D.
    Bayly, Christopher I.
    Shirts, Michael R.
    Mobley, David L.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (11) : 3251 - 3275
  • [10] Bradley J.-C., 2010, NAT PRECED, DOI DOI 10.1038/NPRE.2010.4243.3