Low-frequency electromagnetic harvester for wind turbine vibrations

被引:0
作者
Castellano-Aldave, Carlos [1 ]
Plaza, Aitor [2 ]
Iriarte, Xabier [2 ,3 ]
Carlosena, Alfonso [1 ,3 ]
机构
[1] Dpt. of Electrical, Electronic, and Communications Engineering, Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona
[2] Dpt. of Engineering, Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona
[3] Institute of Smart Cities, Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona
来源
Micro and Nano Engineering | 2024年 / 25卷
关键词
Autonomous sensors; Electro magnetic conversion; Mechanical harvesting; Vibrations; Wind turbines;
D O I
10.1016/j.mne.2024.100287
中图分类号
学科分类号
摘要
In this paper we describe and fully characterize a novel vibration harvester intended to harness energy from the vibration of a wind turbine (WT), to potentially supply power to sensing nodes oriented to structural health monitoring (SHM). The harvester is based on electromagnetic conversion (EM) and can work with vibrations of ultra-low frequencies in any direction of a plane. The harvester bases on a first prototype already disclosed by the authors, but in this paper, we develop an accurate model parameterized by a combination of physical parameters and others related to the geometry of the device. The model allows predicting not only the power generation capabilities, but also the kinematic behaviour of the harvester. Model parameters are estimated by an identification procedure and validated experimentally. Last, the harvester is tested in real conditions on a wind turbine. © 2024
引用
收藏
相关论文
共 50 条
  • [42] Electromagnetic excitation characteristics of fatigue loading test for wind turbine blades
    Zhang Q.
    Huang X.
    Zhang L.
    Yu L.
    Wang J.
    Sui W.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (01): : 1 - 5
  • [43] Frequency response model and mechanism for wind turbine planetary gear train vibration analysis
    He, Guolin
    Ding, Kang
    Li, Weihua
    Li, Yongzhuo
    IET RENEWABLE POWER GENERATION, 2017, 11 (04) : 425 - 432
  • [44] Design of a Low Frequency Piezoelectric Energy Harvester for Rodent Telemetry
    Badr, Basem M.
    Delaney, K. R.
    Dechev, N.
    FERROELECTRICS, 2015, 481 (01) : 98 - 118
  • [45] Comprehensive Characterisation of a Low-Frequency-Vibration Energy Harvester
    Plaza, Aitor
    Iriarte, Xabier
    Castellano-Aldave, Carlos
    Carlosena, Alfonso
    SENSORS, 2024, 24 (12)
  • [46] An investigation into the effect of scour on the natural frequency of an offshore wind turbine
    Prendergast, L. J.
    Gavin, K.
    Doherty, P.
    OCEAN ENGINEERING, 2015, 101 : 1 - 11
  • [47] Low-frequency behavior in a frictionally excited beam
    Quinby, J. L.
    Feeny, B. F.
    JOURNAL OF SOUND AND VIBRATION, 2009, 325 (4-5) : 884 - 893
  • [48] Low-frequency Raman spectroscopy in investigation of explosives
    Liszewska, Malwina
    Bartosewicz, Bartosz
    Budner, Boguslaw
    Szala, Mateusz
    Miczuga, Marcin
    Kopczynski, Krzysztof
    Jankiewicz, Bartlomiej J.
    PRZEMYSL CHEMICZNY, 2020, 99 (10): : 1469 - 1476
  • [49] Health-based audible noise guidelines account for infrasound and low-frequency noise produced by wind turbines
    Berger, Robert G.
    Ashtiani, Payam
    Ollson, Christopher A.
    Aslund, Melissa Whitfield
    McCallum, Lindsay C.
    Leventhall, Geoff
    Knopper, Loren D.
    FRONTIERS IN PUBLIC HEALTH, 2015, 3
  • [50] Active tuned mass dampers for control of in-plane vibrations of wind turbine blades
    Fitzgerald, B.
    Basu, B.
    Nielsen, S. R. K.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2013, 20 (12) : 1377 - 1396