Quantum Circuit for Imputation of Missing Data

被引:2
作者
Sanavio, Claudio [1 ]
Tibaldi, Simone [2 ,3 ]
Tignone, Edoardo [4 ]
Ercolessi, Elisa [2 ,3 ]
机构
[1] Fdn Ist Italiano Tecnol, Ctr Life Nanoneurosci Sapienza, I-00161 Rome, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Leitha Srl, Unipol Grp, I-40138 Bologna, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
关键词
Imputation; Qubit; Logic gates; Quantum circuit; Probability distribution; Training; Correlation; Imputation missing data; quantum computing; variational quantum circuit;
D O I
10.1109/TQE.2024.3447875
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N-2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Cafe: Improved Federated Data Imputation by Leveraging Missing Data Heterogeneity
    Min, Sitao
    Asif, Hafiz
    Wang, Xinyue
    Vaidya, Jaideep
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2266 - 2281
  • [42] Multiple Imputation for Missing Data: Fully Conditional Specification Versus Multivariate Normal Imputation
    Lee, Katherine J.
    Carlin, John B.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (05) : 624 - 632
  • [43] Missing data in bioarchaeology II: A test of ordinal and continuous data imputation
    Wissler, Amanda
    Blevins, Kelly E.
    Buikstra, Jane E.
    [J]. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2022, 179 (03): : 349 - 364
  • [44] Bidirectional Stackable Recurrent Generative Adversarial Imputation Network for Specific Emitter Missing Data Imputation
    Li, Haozhe
    Liao, Yilin
    Tian, Zijian
    Liu, Zhaoran
    Liu, Jiaqi
    Liu, Xinggao
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 2967 - 2980
  • [45] Imputation and Missing Indicators for Handling Missing Longitudinal Data: Data Simulation Analysis Based on Electronic Health Record Data
    Ehrig, Molly
    Bullock, Garrett S.
    Leng, Xiaoyan Iris
    Pajewski, Nicholas M.
    Speiser, Jaime Lynn
    [J]. JMIR MEDICAL INFORMATICS, 2025, 13
  • [46] Missing-data Imputation for Solar Irradiance Forecasting in Thailand
    Layanun, Vichaya
    Suksamosorn, Supachai
    Songsiri, Jitkomut
    [J]. 2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 1234 - 1239
  • [47] TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION
    Allen, Genevera I.
    Tibshirani, Robert
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (02) : 764 - 790
  • [48] Data Imputation for Symbolic Regression with Missing Values: A Comparative Study
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2093 - 2100
  • [49] Missing Data Imputation Through the Use of the Random Forest Algorithm
    Pantanowitz, Adam
    Marwala, Tshilidzi
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, 2009, 61 : 53 - 62
  • [50] Convolutional Low-Rank Tensor Representation for Structural Missing Traffic Data Imputation
    Li, Ben-Zheng
    Zhao, Xi-Le
    Chen, Xinyu
    Ding, Meng
    Liu, Ryan Wen
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 18847 - 18860