Quantum Circuit for Imputation of Missing Data

被引:2
作者
Sanavio, Claudio [1 ]
Tibaldi, Simone [2 ,3 ]
Tignone, Edoardo [4 ]
Ercolessi, Elisa [2 ,3 ]
机构
[1] Fdn Ist Italiano Tecnol, Ctr Life Nanoneurosci Sapienza, I-00161 Rome, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Leitha Srl, Unipol Grp, I-40138 Bologna, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
关键词
Imputation; Qubit; Logic gates; Quantum circuit; Probability distribution; Training; Correlation; Imputation missing data; quantum computing; variational quantum circuit;
D O I
10.1109/TQE.2024.3447875
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N-2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Imputation of missing values in multi-view data
    van Loon, Wouter
    de Vos, Frank
    de Vos, Frank
    Koini, Marisa
    Schmidt, Reinhold
    de Rooij, Mark
    INFORMATION FUSION, 2024, 111
  • [32] When Data Goes Missing: Methods for Missing Score Imputation in Biometric Fusion
    Ding, Yaohui
    Ross, Arun
    BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION VII, 2010, 7667
  • [33] Optimal imputation of missing data for estimation of population mean
    Bhushan, Shashi
    Pandey, Abhay Pratap
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (06) : 755 - 766
  • [34] Evaluating Imputation Methods for Missing Data in a MCI Dataset
    Gomez-Valades Batanero, Alba
    Rincon Zamorano, Mariano
    Martinez Tomas, Rafael
    Guerrero Martin, Juan
    ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 446 - 454
  • [35] A First Approach on Big Data Missing Values Imputation
    Montesdeoca, Besay
    Luengo, Julian
    Maillo, Jesus
    Garcia-Gil, Diego
    Garcia, Salvador
    Herrera, Francisco
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 315 - 323
  • [36] Bangla Missing Data Imputation using HexaGAN Framework
    Sajeeda, Afia
    Ahmed, Shahla Shaan
    Hossain, B. M. Mainul
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [37] A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
    Faquih, Tariq
    van Smeden, Maarten
    Luo, Jiao
    le Cessie, Saskia
    Kastenmueller, Gabi
    Krumsiek, Jan
    Noordam, Raymond
    van Heemst, Diana
    Rosendaal, Frits R.
    van Hylckama Vlieg, Astrid
    Willems van Dijk, Ko
    Mook-Kanamori, Dennis O.
    METABOLITES, 2020, 10 (12) : 1 - 23
  • [38] Missing Data Imputation in the Internet of Things Sensor Networks
    Agbo, Benjamin
    Al-Aqrabi, Hussain
    Hill, Richard
    Alsboui, Tariq
    FUTURE INTERNET, 2022, 14 (05)
  • [39] Missing value imputation on missing completely at random data using multilayer perceptrons
    Silva-Ramirez, Esther-Lydia
    Pino-Mejias, Rafael
    Lopez-Coello, Manuel
    Cubiles-de-la-Vega, Maria-Dolores
    NEURAL NETWORKS, 2011, 24 (01) : 121 - 129
  • [40] Performance Evaluation of Predictive Models for Missing Data Imputation in Weather Data
    Doreswamy
    Gad, Ibrahim
    Manjunatha, B. R.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1327 - 1334