Laser and thermal control over structure and magnetic properties of PrDy-FeCo-B microwires

被引:1
作者
Dvoretskaya, Elizaveta [1 ,2 ]
Morgunov, Roman [1 ,2 ,3 ]
Savin, Valery [4 ]
Chernov, Alexander [3 ,5 ]
机构
[1] Fed Res Ctr Problems Chem Phys & Med Chem RAS, Chernogolovka 142432, Russia
[2] IM Sechenov First Moscow State Med Univ, Moscow 119991, Russia
[3] Russian Quantum Ctr, Skolkovo 121205, Moscow, Russia
[4] Immanuel Kant Baltic Fed Univ, Kaliningrad 236041, Russia
[5] Natl Res Univ, Moscow Inst Phys & Technol, Ctr Photon & 2D Mat, Dolgoprudnyi 141700, Russia
基金
俄罗斯科学基金会;
关键词
Microwires; Amorphous; Rare-earth; Radial domains; Magnetic relief crystal structure; Microcombs;
D O I
10.1016/j.jmmm.2024.172574
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic microcombs are necessary in microrobotics, MEMS technologies, actuator and magnetic flow analyzer industries. Usually, magnetic microcombs are artificial linear magnets of periodic shape. We propose another type of microcombs based of microwires, where periodicity of magnetization is caused by equidistant alternation of natural domains. We have demonstrated the presence of quasi-periodic radial magnetization and the effect of temperature and magnetic field on magnetic relief in PrDyFeCoB microwires. Accurate analysis of chemical, phase and structural composition of the microwires allowed us to reveal necessary conditions for the creation of periodical magnetic relief. Annealing affects magnetic relief and changes structure of initially amorphous microwires. Crystal structure of inclusions enriched with Fe and Co instead of Dy and Pr is body-centered cubic (BCC), while the bulk of the microwire has tetragonal structure. We have found laser stimulated amorphization of surface of PrDy-FeCo-B microwires. Partial restoration of the amorphous structure in polycrystalline microwires under single laser pulse of irradiation of 1mJ power and 120 ns duration has been found in 1-2 mu m depth.
引用
收藏
页数:13
相关论文
共 18 条
  • [1] Buttgenbach S., 2008, IFAC Proc., V41, P12757, DOI [10.3182/20080706-5-KR-1001.02158, DOI 10.3182/20080706-5-KR-1001.02158]
  • [2] Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications
    Chen, Hongmei
    Li, Yong
    Zhang, Zhifeng
    Wang, Shuangshou
    [J]. BIOMICROFLUIDICS, 2020, 14 (04)
  • [3] Controlling Levitation and Enhancing Displacement in Electrostatic Comb Drives of MEMS Actuators
    Imboden, Matthias
    Morrison, Jessica
    Lowell, Evan
    Han, Han
    Bishop, David J.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014, 23 (05) : 1063 - 1072
  • [4] Structure of Magnetic Domain Wall in Cylindrical Microwire
    Janutka, Andrzej
    Gawronski, Przemyslaw
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (05)
  • [5] Magnetic domain structure of wires studied by using the magneto-optical indicator film method
    Kabanov, Y
    Zhukov, A
    Zhukova, V
    Gonzalez, J
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (14) : 1 - 3
  • [6] Laser assisted rapid local crystallization in amorphous PrDyFeCoB microwires
    Koplak, O.
    Morgunov, R.
    Khodos, I.
    [J]. MATERIALS LETTERS, 2021, 301
  • [7] Koplak OV, 2021, PHYS SOLID STATE+, V63, P266, DOI [10.1134/S1063783421020116, 10.21883/FTT.2021.02.50470.215]
  • [8] The Morphology and Mechanical Properties of PrDyFeCoB Microwires
    Koplak, O. V.
    Dvoretskaya, E. V.
    Kravchuk, K. S.
    Useinov, A. S.
    Korolev, D. V.
    Valeev, R. A.
    Piskorskii, V. P.
    Dmitriev, O. S.
    Morgunov, R. B.
    [J]. PHYSICS OF THE SOLID STATE, 2020, 62 (12) : 2272 - 2279
  • [9] Exchange bias and spin-reorientation transition in α-Fe/PrDyCoFeB core/shell microwires
    Koplak, O. V.
    Morgunov, R. B.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 263
  • [10] Magnetic Properties of a Ni Nanonet Grown in Superfluid Helium under Laser Irradiation
    Koplak, Oksana
    Dvoretskaya, Elizaveta
    Stepanov, Maxim
    Karabulin, Alexander
    Matyushenko, Vladimir
    Morgunov, Roman
    [J]. MAGNETOCHEMISTRY, 2021, 7 (10)