Optimization of the intermediate chamber improves desalination performance in flow electrode capacitive deionization (FCDI): A comparative study

被引:7
|
作者
Li, Yunke
Yang, Chenxu
Chen, Meng
Bian, Yonghuan
Niu, Jianrui
Mu, Situ
Zhang, Jing
Liu, Chun
Ma, Junjun [1 ]
机构
[1] Hebei Univ Sci & Technol, Coll Environm Sci & Engn, Shijiazhuang 050018, Peoples R China
基金
中国国家自然科学基金;
关键词
Flow electrode capacitive deionization; Intermediate chamber; Computational fluid dynamics; In situ potential measurements; Energy consumption; ENERGY-CONSUMPTION; SALT REMOVAL; CDI; CELLS;
D O I
10.1016/j.desal.2024.117743
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flow electrode capacitive deionization (FCDI), a novel ion removal technology, is influenced by various factors such as electrode material properties, fluid flow rate, and device structure. In the FCDI system, the intermediate chamber is the core element where ions migrate towards the cathode and anode to complete the adsorption process. In this study, we designed a hollow plastic plate with channels (PP) and a hollow graphite plate with channels (GP) as the intermediate chamber, compare and study with conventional plastic mesh (PM) chambers. CFD simulations revealed that the newly designed PP and GP chambers significantly reduced the hydraulic stagnation zone. The results of the desalination experiments revealed that the desalination efficiency of the GPFCDI was 1.5 and 1.9 times higher than that of the PP-FCDI and PM-FCDI, respectively. At the same time, in situ potential measurement (ISPM) was used to monitor the voltage drop of each component in FCDI, thereby accurately calculated the proportion of energy consumption in the intermediate chamber. The results indicate that the energy consumption of the intermediate chamber of GP-FCDI was 54 % less than that of PM-FCDI. The current work will help us provide new insights for the design and optimization of FCDI systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A brief review on operation of flow-electrode capacitive deionization cells for water desalination
    Dehghan, Khadijeh
    Mirbagheri, Seyed Ahmad
    Alam, Mandi
    DESALINATION AND WATER TREATMENT, 2021, 223 : 34 - 53
  • [32] Enhancing the Desalination Performance of Capacitive Deionization Using a Layered Double Hydroxide Coated Activated Carbon Electrode
    Lee, Jaehan
    Kim, Seoni
    Kim, Nayeong
    Kim, Choonsoo
    Yoon, Jeyong
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [33] Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology
    Xu, Longqian
    Yu, Chao
    Tian, Shiyu
    Mao, Yunfeng
    Zong, Yang
    Zhang, Xiaomeng
    Zhang, Bing
    Zhang, Changyong
    Wu, Deli
    ACS ES&T WATER, 2021, 1 (01): : 175 - 184
  • [34] A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber
    Yunke Li
    Junjun Ma
    Chenxu Yang
    Jianrui Niu
    Yonghuan Bian
    Ruicheng Chen
    Puming Zhang
    Jing Zhang
    Chun Liu
    Frontiers of Environmental Science & Engineering, 2024, 18
  • [35] Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization
    Tang, Kexin
    Yiacoumi, Sotira
    Li, Yuping
    Tsouris, Costas
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1085 - 1094
  • [36] Carbon Material-Based Flow-Electrode Capacitive Deionization for Continuous Water Desalination
    Alsaikhan, Khaled
    Alsultan, Abdullah
    Alkhaldi, Abdulrahman
    Bentalib, Abdulaziz
    Abutalib, Ahmed
    Wu, Dezhen
    Li, Jialu
    Xie, Rongxuan
    Peng, Zhenmeng
    PROCESSES, 2023, 11 (01)
  • [37] Novel strategy to enhance the desalination performance of flow-electrode capacitive deionization process via the assistance of electro-catalytic water splitting
    Pan, Zonglin
    An, Jinshuo
    Wang, Pengcheng
    Fan, Xinfei
    Shen, Tong
    Xu, Ruisong
    Song, Yongxin
    Song, Chengwen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 279
  • [38] Construction and evaluation of a novel three-electrode capacitive deionization system with high desalination performance
    Shi, Mingxing
    Qiang, Hua
    Chen, Chunyu
    Bano, Zahira
    Wang, Fengyun
    Xia, Mingzhu
    Lei, Wu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 273
  • [39] Selection and optimization of carbon-based electrode materials for flow-electrode capacitive deionization
    Zhang, Wanni
    Xue, Wenchao
    Xiao, Kang
    Visvanathan, Chettiyappan
    Tang, Jialing
    Li, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 315
  • [40] Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system
    Xu, Longqian
    Mao, Yunfeng
    Zong, Yang
    Wu, Deli
    WATER RESEARCH, 2021, 190