One-shot knowledge graph completion based on disentangled representation learning

被引:0
|
作者
Zhang, Youmin [1 ]
Sun, Lei [1 ]
Wang, Ye [1 ]
Liu, Qun [1 ]
Liu, Li [1 ]
机构
[1] Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing
基金
中国国家自然科学基金;
关键词
Disentangled representation learning; Few-shot learning; Knowledge graph completion; Orthogonal regularization;
D O I
10.1007/s00521-024-10236-9
中图分类号
学科分类号
摘要
One-shot knowledge graph completion (KGC) aims to infer unseen facts when only one support entity pair is available for a particular relationship. Prior studies learn reference representations from one support pair for matching query pairs. This strategy can be challenging, particularly when dealing with multiple relationships between identical support pairs, resulting in indistinguishable reference representations. To this end, we propose a disentangled representation learning framework for one-shot KGC. Specifically, to learn sufficient representations, we construct an entity encoder with a fine-grained attention mechanism to explicitly model the input and output neighbors. We adopt an orthogonal regularizer to promote the independence of learned factors in entity representation, enabling the matching processor with max pooling to adaptively identify the semantic roles associated with a particular relation. Subsequently, the one-shot KGC is accomplished by seamlessly integrating the aforementioned modules in an end-to-end learning manner. Extensive experiments on real-world datasets demonstrate the outperformance of the proposed framework. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:20277 / 20293
页数:16
相关论文
共 50 条
  • [1] MetaP: Meta Pattern Learning for One-Shot Knowledge Graph Completion
    Jiang, Zhiyi
    Gao, Jianliang
    Lv, Xinqi
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2232 - 2236
  • [2] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [3] Knowledge graph completion method based on hyperbolic representation learning and contrastive learning
    Zhang, Xiaodong
    Wang, Meng
    Zhong, Xiuwen
    An, Feixu
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (04)
  • [4] A survey of few-shot knowledge graph completion
    Zhang, Chaoqin
    Li, Ting
    Yin, Yifeng
    Ma, Jiangtao
    Gan, Yong
    Zhang, Yanhua
    Qiao, Yaqiong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (04) : 6127 - 6143
  • [5] Multi-Concept Representation Learning for Knowledge Graph Completion
    Wang, Jiapu
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
  • [6] Simplified Representation Learning Model Based on Parameter-Sharing for Knowledge Graph Completion
    Wang, Yashen
    Zhang, Huanhuan
    Li, Yifeng
    Xie, Haiyong
    INFORMATION RETRIEVAL (CCIR 2019), 2019, 11772 : 67 - 78
  • [7] Relational multi-scale metric learning for few-shot knowledge graph completion
    Song, Yu
    Gui, Mingyu
    Zhang, Kunli
    Xu, Zexi
    Dai, Dongming
    Kong, Dezhi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (07) : 4125 - 4150
  • [8] Meta-Learning Based Dynamic Adaptive Relation Learning for Few-Shot Knowledge Graph Completion
    Cai, Linqin
    Wang, Lingjun
    Yuan, Rongdi
    Lai, Tingjie
    BIG DATA RESEARCH, 2023, 33
  • [9] Demystification of Few-shot and One-shot Learning
    Tyukin, Ivan Y.
    Gorban, Alexander N.
    Alkhudaydi, Muhammad H.
    Zhou, Qinghua
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Concept-driven representation learning model for knowledge graph completion
    Xiang, Yan
    He, Hongguang
    Yu, Zhengtao
    Huang, Yuxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268