Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:5
作者
Ahmad, Muhammad [1 ]
Butt, Muhammad Hassaan Farooq [2 ]
Mazzara, Manuel [3 ]
Distefano, Salvatore [4 ]
Khan, Adil Mehmood [5 ]
Altuwaijri, Hamad Ahmed [6 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Islamabad 35400, Pakistan
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Innopolis Univ, Inst Software Dev & Engn, Innopolis 420500, Russia
[4] Univ Messina, Dipartimento Matemat & Informat, MIFT, I-98121 Messina, Italy
[5] Univ Hull, Sch Comp Sci, Kingston Upon Hull HU6 7RX, England
[6] King Saud Univ, Coll Humanities & Social Sci, Dept Geog, Riyadh 11451, Saudi Arabia
关键词
Transformers; Feature extraction; Convolution; Semantics; Computational modeling; Training; Data mining; Pyramid network; spatial-spectral transformer (SST); hyperspectral image classification (HSIC); VISION TRANSFORMER; NETWORK;
D O I
10.1109/JSTARS.2024.3461851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).
引用
收藏
页码:17681 / 17689
页数:9
相关论文
共 50 条
  • [41] A Spatial-Spectral Transformer for Hyperspectral Image Classification Based on Global Dependencies of Multi-Scale Features
    Ma, Yunxuan
    Lan, Yan
    Xie, Yakun
    Yu, Lanxin
    Chen, Chen
    Wu, Yusong
    Dai, Xiaoai
    REMOTE SENSING, 2024, 16 (02)
  • [42] LESSFormer: Local-Enhanced Spectral-Spatial Transformer for Hyperspectral Image Classification
    Zou, Jiaqi
    He, Wei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] Local Linear Spatial-Spectral Probabilistic Distribution for Hyperspectral Image Classification
    Huang, Hong
    Duan, Yule
    He, Haibo
    Shi, Guangyao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 1259 - 1272
  • [45] Spatial-Spectral Joint Classification of Hyperspectral Image With Locality and Edge Preserving
    Zhang, Hui
    Liu, Wanjun
    Lv, Huanhuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 2240 - 2250
  • [46] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
    Lei, Jianjun
    Li, Xinyu
    Peng, Bo
    Fang, Leyuan
    Ling, Nam
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2686 - 2697
  • [47] Spatial-Spectral Adaptive Learning With Pixelwise Filtering for Hyperspectral Image Classification
    Gao, Wenfei
    Liu, Fang
    Liu, Jia
    Xiao, Liang
    Tang, Xu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Spatial-spectral classification of hyperspectral image via group tensor decomposition
    Zhao, Guangzhe
    Tu, Bing
    Fei, Hongyan
    Li, Nanying
    Yang, Xianchang
    NEUROCOMPUTING, 2018, 316 : 68 - 77
  • [49] Spatial-Spectral Mixing Transformer With Hybrid Image Prior for Multispectral Image Demosaicing
    Dong, Le
    Liu, Mengzu
    Tang, Tengteng
    Huang, Tao
    Lin, Jie
    Dong, Weisheng
    Shi, Guangming
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2025, 19 (01) : 221 - 233
  • [50] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60