Air-Sea Turbulent Heat Flux Affects Oceanic Lateral Eddy Heat Transport

被引:0
|
作者
Wu, Weiguang [1 ,2 ]
Mahadevan, Amala [2 ]
机构
[1] MIT, WHOI Joint Program Oceanog, Cambridge, MA 02139 USA
[2] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
关键词
mesoscale ocean eddy; air-sea interaction; eddy heat transport; eddy SST pattern; MESOSCALE EDDIES; SURFACE TEMPERATURE; FEEDBACK; VARIABILITY; ATMOSPHERE; SIGNATURE; ATLANTIC; CURRENTS;
D O I
10.1029/2024GL110459
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Sea surface temperature anomaly (SSTA) of ocean eddies induces an anomalous air-sea turbulent heat flux that acts to dampen SSTA. A two-dimensional SSTA model explores the effect of air-sea turbulent heat flux, parameterized as SSTA damping, in shaping eddy SSTA patterns. Increased SSTA damping transitions the SSTA pattern from a monopole to dipole, indicating the balance between eddy stirring of the background SST gradient and SSTA damping. The SSTA dipole pattern increases the correlation of eddy velocity and SSTA, but SSTA damping weakens the SSTA, resulting in an optimal damping rate maximizing lateral eddy surface heat transport. Globally, the SSTA damping rate increases toward the equator. In mid-latitude and high-latitude regions (e.g., the Kuroshio, the Gulf Stream, and the Southern Ocean), eddy SSTAs are monopoles, while the tropics and subtropics exhibit dipole SSTA patterns due to higher damping rates, facilitating greater lateral eddy heat transport when the SSTA is large.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Oceanic Advection Controls Mesoscale Mixed Layer Heat Budget and Air-Sea Heat Exchange in the Southern Ocean
    Gao, Yu
    Kamenkovich, Igor
    Perlin, Natalie
    Kirtman, Benjamin
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2022, 52 (04) : 537 - 555
  • [12] Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale
    Ute Hausmann
    Arnaud Czaja
    John Marshall
    Climate Dynamics, 2017, 48 : 1297 - 1307
  • [13] Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale
    Hausmann, Ute
    Czaja, Arnaud
    Marshall, John
    CLIMATE DYNAMICS, 2017, 48 (3-4) : 1297 - 1307
  • [14] On the Hyperbolicity of the Bulk Air-Sea Heat Flux Functions: Insights into the Efficiency of Air-Sea Moisture Disequilibrium for Tropical Cyclone Intensification
    de la Cruz, Benjamin Jaimes
    Shay, Lynn K.
    Wadler, Joshua B.
    Rudzin, Johna E.
    MONTHLY WEATHER REVIEW, 2021, 149 (05) : 1517 - 1534
  • [15] Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability
    Sando, A. B.
    Nilsen, J. E. O.
    Gao, Y.
    Lohmann, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [16] The seasonal variability of an air-sea heat flux in the northern South China Sea
    Zhang Yan
    Wang Dongxiao
    Xia Huayong
    Zeng Lili
    ACTA OCEANOLOGICA SINICA, 2012, 31 (05) : 79 - 86
  • [17] The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean
    Villas Boas, A. B.
    Sato, O. T.
    Chaigneau, A.
    Castelao, G. P.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (06) : 1856 - 1862
  • [18] Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area
    Schlichtholz, P.
    Houssais, M. -N.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [19] Oceanic eddy with submesoscale edge drives intense air-sea exchanges and beyond
    Zhu, Ruichen
    Li, Mingkui
    Yang, Haiyuan
    Ma, Xin
    Chen, Zhaohui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [20] Effects of Sea Land Breeze on Air-Sea Turbulent Heat Fluxes in Different Seasons Using Platform Observation in East China Sea
    Shen, Lixing
    Zhao, Chuanfeng
    Xu, Changsan
    Yan, Yunwei
    Chen, Annan
    Yang, Yikun
    Hang, Rui
    Zhu, Yizhi
    Zhang, Zhijiang
    Song, Xiangzhou
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (05)