Plug-and-Play Algorithms for Dynamic Non-line-of-sight Imaging

被引:1
作者
Ye, Juntian [1 ]
Hong, Yu [1 ]
Su, Xiongfei [2 ,3 ]
Yuan, Xin [3 ]
Xu, Feihu [1 ]
机构
[1] Univ Sci & Technol China, Phys, Hefei, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] Westlake Univ, Hangzhou, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2024年 / 43卷 / 05期
关键词
Computational photography; time-of- flight imaging; non-line-of-sight imaging;
D O I
10.1145/3665139
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single-frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 x 128 x 512) in post-processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Fast back-projection for non-line of sight reconstruction [J].
Arellano, Victor ;
Gutierrez, Diego ;
Jarabo, Adrian .
OPTICS EXPRESS, 2017, 25 (10) :11574-11583
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[5]   Non-line-of-sight imaging using a time-gated single photon avalanche diode [J].
Buttafava, Mauro ;
Zeman, Jessica ;
Tosi, Alberto ;
Eliceiri, Kevin ;
Velten, Andreas .
OPTICS EXPRESS, 2015, 23 (16) :20997-21011
[6]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[7]   High-resolution non-line-of-sight imaging employing active focusing [J].
Cao, Ruizhi ;
de Goumoens, Frederic ;
Blochet, Baptiste ;
Xu, Jian ;
Yang, Changhuei .
NATURE PHOTONICS, 2022, 16 (06) :462-+
[8]   Learned Feature Embeddings for Non-Line-of-Sight Imaging and Recognition [J].
Chen, Wenzheng ;
Wei, Fangyin ;
Kutulakos, Kiriakos N. ;
Rusinkiewicz, Szymon ;
Heide, Felix .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06)
[9]   Deep Non-Line-Of-Sight Reconstruction [J].
Chopite, Javier Grau ;
Hullin, Matthias B. ;
Wand, Michael ;
Iseringhausen, Julian .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :957-966
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095