PDSR: A Privacy-Preserving Diversified Service Recommendation Method on Distributed Data

被引:0
|
作者
Wang, Lina [1 ]
Yang, Huan [2 ]
Shen, Yiran [3 ]
Liu, Chao [4 ]
Qi, Lianyong [5 ]
Cheng, Xiuzhen [1 ]
Li, Feng [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Qingdao 266237, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[4] Ocean Univ China, Dept Comp Sci & Technol, Qingdao 266100, Peoples R China
[5] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
关键词
Quality of service; Privacy; Accuracy; Soft sensors; Distributed databases; Proposals; Collaborative filtering; recommendation diversity; privacy preservation;
D O I
10.1109/TSC.2024.3455111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The last decade has witnessed a tremendous growth of service computing, while efficient service recommendation methods are desired to recommend high-quality services to users. It is well known that collaborative filtering is one of the most popular methods for service recommendation based on QoS, and many existing proposals focus on improving recommendation accuracy, i.e., recommending high-quality redundant services. Nevertheless, users may have different requirements on QoS, and hence diversified recommendation has been attracting increasing attention in recent years to fulfill users' diverse demands and to explore potential services. Unfortunately, the recommendation performances relies on a large volume of data (e.g., QoS data), whereas the data may be distributed across multiple platforms. Therefore, to enable data sharing across the different platforms for diversified service recommendation, we propose a Privacy-preserving Diversified Service Recommendation (PDSR) method. Specifically, we innovate in leveraging the Locality-Sensitive Hashing (LSH) mechanism such that privacy-preserved data sharing across different platforms is enabled to construct a service similarity graph. Based on the similarity graph, we propose a novel accuracy-diversity metric and design a 2-approximation algorithm to select $K$K services to recommend by maximizing the accuracy-diversity measure. Extensive experiments on real datasets are conducted to verify the efficacy of our PDSR method.
引用
收藏
页码:2733 / 2746
页数:14
相关论文
共 50 条
  • [31] Privacy-preserving SOM-based recommendations on horizontally distributed data
    Kaleli, Cihan
    Polat, Huseyin
    KNOWLEDGE-BASED SYSTEMS, 2012, 33 : 124 - 135
  • [32] Highly distributed and privacy-preserving queries on personal data management systems
    Luc Bouganim
    Julien Loudet
    Iulian Sandu Popa
    The VLDB Journal, 2023, 32 : 415 - 445
  • [33] Privacy-Preserving Concordance-based Recommendations on Vertically Distributed Data
    Kaleli, Cihan
    2012 TENTH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING, 2012, : 19 - 24
  • [34] Privacy-Preserving Trust-based Recommendations on Vertically Distributed Data
    Kaleli, Cihan
    Polat, Huseyin
    FIFTH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2011), 2011, : 376 - 379
  • [35] How to deal with malicious users in privacy-preserving distributed data mining
    Duan, Yitao
    Canny, John
    Statistical Analysis and Data Mining, 2009, 2 (01): : 18 - 33
  • [36] Privacy-preserving distributed mining of association rules on horizontally partitioned data
    Kantarcioglu, M
    Clifton, C
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (09) : 1026 - 1037
  • [37] A Method for Privacy-preserving Collaborative Filtering Recommendations
    Georgiadis, Christos K.
    Polatidis, Nikolaos
    Mouratidis, Haralambos
    Pimenidis, Elias
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2017, 23 (02) : 146 - 166
  • [38] A Privacy-Preserving Task Recommendation Framework for Mobile Crowdsourcing
    Gong, Yanmin
    Guo, Yuanxiong
    Fang, Yuguang
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 588 - 593
  • [39] A Novel Temporal Privacy-Preserving Model for Social Recommendation
    Gao, Lina
    Yu, Jiguo
    Zhao, Jianli
    Hu, Chunqiang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05) : 5658 - 5670
  • [40] A Blockchain-based Privacy-Preserving Recommendation Mechanism
    Lin, Liangjie
    Tian, Yuchen
    Liu, Yang
    2021 IEEE 5TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP), 2021, : 74 - 78