Green hydrogen production through a facile aqueous-phase reforming technique from waste biomass: A comprehensive review

被引:1
|
作者
Jamil, Farrukh [1 ,2 ]
Inayat, Abrar [1 ,3 ]
Hussain, Murid [2 ]
Ghenai, Chaouki [1 ,4 ]
Shanableh, Abdallah [1 ,5 ]
Sarwer, Asma [2 ]
Shah, Noor S. [6 ]
Park, Young-Kwon [7 ]
机构
[1] Univ Sharjah, Res Inst Sci & Engn, Ctr Sustainable Energy & Power Syst Res, Biomass & Bioenergy Res Grp, Sharjah, U Arab Emirates
[2] COMSATS Univ Islamabad CUI, Dept Chem Engn, Lahore Campus Def Rd,Off Raiwind Rd, Lahore, Pakistan
[3] Univ Sharjah, Dept Mech & Nucl Engn, Sharjah 27272, U Arab Emirates
[4] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, Sharjah 27272, U Arab Emirates
[5] Univ Sharjah, Dept Civil & Environm Engn, Sharjah 27272, U Arab Emirates
[6] COMSATS Univ Islamabad, Dept Chem, Abbottabad Campus, Abbottabad, Pakistan
[7] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Green hydrogen; Biomass; Aqueous-phase reforming; Sustainable solution; RENEWABLE ENERGY-SOURCES; SITU ATR-IR; ETHYLENE-GLYCOL; CATALYTIC-PROPERTIES; OXYGENATED HYDROCARBONS; NI/AL2O3; CATALYSTS; SUSTAINABLE ENERGY; H-2; PRODUCTION; GLYCEROL; WATER;
D O I
10.1016/j.ijhydene.2024.11.239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current energy requirements are fulfilled by the combustion of fossil fuels, resulting in various concerns including environmental pollution and the depletion of natural resources. Hydrogen has emerged as a sustainable solution for the current energy crisis and is a potential alternative to fossil fuels. Consequently, modern technologies are being developed to introduce novel options for utilizing renewable energy sources as an alternative for energy generation. The use of waste (lignocellulosic) biomass in the aqueous-phase reforming (APR) process for hydrogen production has provided sustainable solutions. The APR mechanism utilizes different catalysts depending on the type of feedstock used for hydrogen production. Catalyst selection mainly aims to facilitate hydrogen production via C-C bond cleavage and the water-gas shift (WGS) reaction. This review focuses on green hydrogen production from waste biomass via APR. In addition, the economic and commercial feasibility of APR for hydrogen production using different types of biomass waste, development of catalysts for higher selectivity, process integration, optimization of process parameters, and the use of pretreatment processes to increase hydrogen yield are highlighted. The total cost of H2 production is estimated to be $7.45/kg H2; therefore, economic feasibility remains a significant challenge for its large-scale implementation. This study is concluded with suggestions for optimizing the process for economical and large-scale hydrogen production.
引用
收藏
页码:126 / 146
页数:21
相关论文
共 50 条
  • [31] Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts
    Kim, Tae-Wan
    Kim, Ho-Dong
    Jeong, Kwang-Eun
    Chae, Ho-Jeong
    Jeong, Soon-Yong
    Lee, Chang-Ha
    Kim, Chul-Ung
    GREEN CHEMISTRY, 2011, 13 (07) : 1718 - 1728
  • [32] Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides
    Menezes, Andre O.
    Rodrigues, Michelly T.
    Zimmaro, Adriana
    Borges, Luiz E. P.
    Fraga, Marco A.
    RENEWABLE ENERGY, 2011, 36 (02) : 595 - 599
  • [33] A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions
    Coronado, I.
    Stekrova, M.
    Reinikainen, M.
    Simell, P.
    Lefferts, L.
    Lehtonen, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (26) : 11003 - 11032
  • [34] Catalytic Reforming of the Aqueous Phase Derived from Diluted Hydrogen Peroxide Oxidation of Waste Polyethylene for Hydrogen Production
    Su, Hongcai
    Li, Tian
    Zhu, Lingjun
    Wang, Shurong
    CHEMSUSCHEM, 2021, 14 (19) : 4270 - 4279
  • [35] Kinetic Characterization of Pt/Al2O3 Catalyst for Hydrogen Production via Methanol Aqueous-Phase Reforming
    Sousa, Jose
    Lakhtaria, Paranjeet
    Ribeirinha, Paulo
    Huhtinen, Werneri
    Tallgren, Johan
    Mendes, Adelio
    CATALYSTS, 2024, 14 (10)
  • [36] Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts
    Kim, Ho-Dong
    Park, Hyun Ju
    Kim, Tae-Wan
    Jeong, Kwang-Eun
    Chae, Ho-Jeong
    Jeong, Soon-Yong
    Lee, Chang-Ha
    Kim, Chul-Ung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8310 - 8317
  • [37] Carbon-Coated Ceramic Membrane Reactor for the Production of Hydrogen by Aqueous-Phase Reforming of Sorbitol
    D'Angelo, M. F. Neira
    Ordomsky, V.
    Schouten, J. C.
    van der Schaaf, J.
    Nijhuis, T. A.
    CHEMSUSCHEM, 2014, 7 (07) : 2007 - 2015
  • [38] Hydrogen Production by Aqueous-Phase Reforming of Macroalgal Biomass Using a Pt/Al2O3 Catalyst
    Zambare, Rohini S.
    Vaidya, Prakash D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (43) : 17451 - 17460
  • [39] Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt-Ru bimetallic catalysts
    Chang, Alex C. -C.
    Louh, R. F.
    Wong, Dale
    Tseng, Jessy
    Lee, Y. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (14) : 8794 - 8799
  • [40] Effect of support's basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR
    Guo, Yong
    Azmat, Muhammad Usman
    Liu, Xiaohui
    Wang, Yanqin
    Lu, Guanzhong
    APPLIED ENERGY, 2012, 92 : 218 - 223