Green hydrogen production through a facile aqueous-phase reforming technique from waste biomass: A comprehensive review

被引:1
|
作者
Jamil, Farrukh [1 ,2 ]
Inayat, Abrar [1 ,3 ]
Hussain, Murid [2 ]
Ghenai, Chaouki [1 ,4 ]
Shanableh, Abdallah [1 ,5 ]
Sarwer, Asma [2 ]
Shah, Noor S. [6 ]
Park, Young-Kwon [7 ]
机构
[1] Univ Sharjah, Res Inst Sci & Engn, Ctr Sustainable Energy & Power Syst Res, Biomass & Bioenergy Res Grp, Sharjah, U Arab Emirates
[2] COMSATS Univ Islamabad CUI, Dept Chem Engn, Lahore Campus Def Rd,Off Raiwind Rd, Lahore, Pakistan
[3] Univ Sharjah, Dept Mech & Nucl Engn, Sharjah 27272, U Arab Emirates
[4] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, Sharjah 27272, U Arab Emirates
[5] Univ Sharjah, Dept Civil & Environm Engn, Sharjah 27272, U Arab Emirates
[6] COMSATS Univ Islamabad, Dept Chem, Abbottabad Campus, Abbottabad, Pakistan
[7] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Green hydrogen; Biomass; Aqueous-phase reforming; Sustainable solution; RENEWABLE ENERGY-SOURCES; SITU ATR-IR; ETHYLENE-GLYCOL; CATALYTIC-PROPERTIES; OXYGENATED HYDROCARBONS; NI/AL2O3; CATALYSTS; SUSTAINABLE ENERGY; H-2; PRODUCTION; GLYCEROL; WATER;
D O I
10.1016/j.ijhydene.2024.11.239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current energy requirements are fulfilled by the combustion of fossil fuels, resulting in various concerns including environmental pollution and the depletion of natural resources. Hydrogen has emerged as a sustainable solution for the current energy crisis and is a potential alternative to fossil fuels. Consequently, modern technologies are being developed to introduce novel options for utilizing renewable energy sources as an alternative for energy generation. The use of waste (lignocellulosic) biomass in the aqueous-phase reforming (APR) process for hydrogen production has provided sustainable solutions. The APR mechanism utilizes different catalysts depending on the type of feedstock used for hydrogen production. Catalyst selection mainly aims to facilitate hydrogen production via C-C bond cleavage and the water-gas shift (WGS) reaction. This review focuses on green hydrogen production from waste biomass via APR. In addition, the economic and commercial feasibility of APR for hydrogen production using different types of biomass waste, development of catalysts for higher selectivity, process integration, optimization of process parameters, and the use of pretreatment processes to increase hydrogen yield are highlighted. The total cost of H2 production is estimated to be $7.45/kg H2; therefore, economic feasibility remains a significant challenge for its large-scale implementation. This study is concluded with suggestions for optimizing the process for economical and large-scale hydrogen production.
引用
收藏
页码:126 / 146
页数:21
相关论文
共 50 条
  • [21] Aqueous phase reforming of starch wastewater over Pt and Pt-based bimetallic catalysts for green hydrogen production
    Oliveira, Adriana S.
    Baeza, Jose A.
    Calvo, Luisa
    Gilarranz, Miguel A.
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [22] Aqueous-phase reforming of crude glycerol: effect of impurities on hydrogen production
    Boga, Dilek A.
    Liu, Fang
    Bruijnincx, Pieter C. A.
    Weckhuysen, Bert M.
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (01) : 134 - 143
  • [23] Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
    Tian, Zhipeng
    Lu, Yongheng
    Wang, Junyao
    Shu, Riyang
    Wang, Chao
    Chen, Ying
    FUEL, 2024, 357
  • [24] Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2
    Manfro, Robinson L.
    da Costa, Aline F.
    Ribeiro, Nielson F. P.
    Souza, Mariana M. V. M.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (03) : 330 - 335
  • [25] Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts
    Guo, Yong
    Liu, Xiaohui
    Azmat, Muhammad Usman
    Xu, Wenjie
    Ren, Jiawen
    Wang, Yanqin
    Lu, Guanzhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 227 - 234
  • [26] Controlling and Stabilization of Ru Nanoparticles by Tuning the Nitrogen Content of the Support for Enhanced H2 Production through Aqueous-Phase Reforming of Glycerol
    Gogoi, Pranjal
    Kanna, Narsimharao
    Begum, Pakiza
    Deka, Ramesh C.
    Satyanarayana, C. V. V.
    Raja, Thirumalaiswamy
    ACS CATALYSIS, 2020, 10 (04) : 2489 - 2507
  • [27] Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni-Cu catalysts derived from hydrotalcite precursors
    Tuza, Pablo V.
    Manfro, Robinson L.
    Ribeiro, Nielson F. P.
    Souza, Mariana M. V. M.
    RENEWABLE ENERGY, 2013, 50 : 408 - 414
  • [28] Hydrogen Production by Aqueous-Phase Reforming of Model Compounds of Wet Biomass over Platinum Catalysts
    Kalekar, Vinayak N.
    Vaidya, Prakash D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (28) : 10004 - 10013
  • [29] Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts
    Oliveira, A. S.
    Baeza, J. A.
    Calvo, L.
    Alonso-Morales, N.
    Heras, F.
    Rodriguez, J. J.
    Gilarranz, M. A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 245 : 367 - 375
  • [30] Aqueous-phase reforming of model compounds of wet biomass to hydrogen on alumina-supported metal catalysts
    Zambare, Rohini S.
    Vaidya, Prakash D.
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2024, 56 (05) : 265 - 278