Green hydrogen production through a facile aqueous-phase reforming technique from waste biomass: A comprehensive review

被引:1
|
作者
Jamil, Farrukh [1 ,2 ]
Inayat, Abrar [1 ,3 ]
Hussain, Murid [2 ]
Ghenai, Chaouki [1 ,4 ]
Shanableh, Abdallah [1 ,5 ]
Sarwer, Asma [2 ]
Shah, Noor S. [6 ]
Park, Young-Kwon [7 ]
机构
[1] Univ Sharjah, Res Inst Sci & Engn, Ctr Sustainable Energy & Power Syst Res, Biomass & Bioenergy Res Grp, Sharjah, U Arab Emirates
[2] COMSATS Univ Islamabad CUI, Dept Chem Engn, Lahore Campus Def Rd,Off Raiwind Rd, Lahore, Pakistan
[3] Univ Sharjah, Dept Mech & Nucl Engn, Sharjah 27272, U Arab Emirates
[4] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, Sharjah 27272, U Arab Emirates
[5] Univ Sharjah, Dept Civil & Environm Engn, Sharjah 27272, U Arab Emirates
[6] COMSATS Univ Islamabad, Dept Chem, Abbottabad Campus, Abbottabad, Pakistan
[7] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Green hydrogen; Biomass; Aqueous-phase reforming; Sustainable solution; RENEWABLE ENERGY-SOURCES; SITU ATR-IR; ETHYLENE-GLYCOL; CATALYTIC-PROPERTIES; OXYGENATED HYDROCARBONS; NI/AL2O3; CATALYSTS; SUSTAINABLE ENERGY; H-2; PRODUCTION; GLYCEROL; WATER;
D O I
10.1016/j.ijhydene.2024.11.239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current energy requirements are fulfilled by the combustion of fossil fuels, resulting in various concerns including environmental pollution and the depletion of natural resources. Hydrogen has emerged as a sustainable solution for the current energy crisis and is a potential alternative to fossil fuels. Consequently, modern technologies are being developed to introduce novel options for utilizing renewable energy sources as an alternative for energy generation. The use of waste (lignocellulosic) biomass in the aqueous-phase reforming (APR) process for hydrogen production has provided sustainable solutions. The APR mechanism utilizes different catalysts depending on the type of feedstock used for hydrogen production. Catalyst selection mainly aims to facilitate hydrogen production via C-C bond cleavage and the water-gas shift (WGS) reaction. This review focuses on green hydrogen production from waste biomass via APR. In addition, the economic and commercial feasibility of APR for hydrogen production using different types of biomass waste, development of catalysts for higher selectivity, process integration, optimization of process parameters, and the use of pretreatment processes to increase hydrogen yield are highlighted. The total cost of H2 production is estimated to be $7.45/kg H2; therefore, economic feasibility remains a significant challenge for its large-scale implementation. This study is concluded with suggestions for optimizing the process for economical and large-scale hydrogen production.
引用
收藏
页码:126 / 146
页数:21
相关论文
共 50 条
  • [21] Hydrogen Production by Aqueous-Phase Reforming of Macroalgal Biomass Using a Pt/Al2O3 Catalyst
    Zambare, Rohini S.
    Vaidya, Prakash D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (43) : 17451 - 17460
  • [22] A short review on green H2 production by aqueous phase reforming of biomass derivatives
    Songqi Leng
    Shahzad Barghi
    Chunbao Xu
    npj Materials Sustainability, 2 (1):
  • [23] Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt-Ru bimetallic catalysts
    Chang, Alex C. -C.
    Louh, R. F.
    Wong, Dale
    Tseng, Jessy
    Lee, Y. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (14) : 8794 - 8799
  • [24] SYNERGISTIC HYDROGEN PRODUCTION FROM WATER-SPLITTING AND AQUEOUS PHASE BIOMASS REFORMING
    Buddineni, V.
    Shende, A.
    Sellers, E.
    Shende, R.
    PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE, VOL 91, 2012, 91 : 209 - 209
  • [25] Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
    Tian, Zhipeng
    Lu, Yongheng
    Wang, Junyao
    Shu, Riyang
    Wang, Chao
    Chen, Ying
    FUEL, 2024, 357
  • [26] Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors
    Cruz, Ivna O.
    Ribeiro, Nielson F. P.
    Aranda, Donato A. G.
    Souza, Mariana M. V. M.
    CATALYSIS COMMUNICATIONS, 2008, 9 (15) : 2606 - 2611
  • [27] Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts
    Guo, Yong
    Liu, Xiaohui
    Azmat, Muhammad Usman
    Xu, Wenjie
    Ren, Jiawen
    Wang, Yanqin
    Lu, Guanzhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 227 - 234
  • [28] Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production
    Coronado, Irene
    Stekrova, Martina
    Garcia Moreno, Lourdes
    Reinikainen, Matti
    Simell, Pekka
    Karinen, Reetta
    Lehtonen, Juha
    BIOMASS & BIOENERGY, 2017, 106 : 29 - 37
  • [29] Hydrogen Production via Aqueous-Phase Reforming of Ethanol Catalyzed by Ruthenium Alkylidene Complexes
    Wang, Qian
    Xia, Yihao
    Chen, Zhijian
    Wang, Yifan
    Cheng, Fanrui
    Qin, Lei
    Zheng, Zhiping
    ORGANOMETALLICS, 2022, 41 (08) : 914 - 919
  • [30] Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process
    Meryemoglu, Bahar
    Irmak, Sibel
    Hasanoglu, Arif
    FUEL PROCESSING TECHNOLOGY, 2016, 151 : 59 - 63