Sensitivity analysis for studies transporting prediction models

被引:0
作者
Steingrimsson, Jon A. [1 ]
Robertson, Sarah E. [2 ,3 ]
Voter, Sarah [1 ]
Dahabreh, Issa J. [2 ,3 ,4 ]
机构
[1] Brown Univ, Dept Biostat, 121 South Main St, Providence, RI 02903 USA
[2] Harvard TH Chan Sch Publ Hlth, CAUSALab, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
exponential tilt; model performance; prediction models; sensitivity analysis; transportability; COVARIATE SHIFT; DROP-OUT; REGRESSION; INFERENCE; MORTALITY;
D O I
10.1093/biomtc/ujae129
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider estimation of measures of model performance in a target population when covariate and outcome data are available from a source population and covariate data, but not outcome data, are available from the target population. In this setting, identification of measures of model performance is possible under an untestable assumption that the outcome and population (source or target) are independent conditional on covariates. In practice, this assumption is uncertain and, in some cases, controversial. Therefore, sensitivity analysis may be useful for examining the impact of assumption violations on inferences about model performance. Here, we propose an exponential tilt sensitivity analysis model and develop statistical methods to determine how measures of model performance are affected by violations of the assumption of conditional independence between outcome and population. We provide identification results and estimators for the risk in the target population under the sensitivity analysis model, examine the large-sample properties of the estimators, and apply them to data on lung cancer screening.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Analysis of local sensitivity to nonignorability with missing outcomes and predictors [J].
Chen, Heng ;
Heitjan, Daniel F. .
BIOMETRICS, 2022, 78 (04) :1342-1352
[3]   Parametric models for response-biased sampling [J].
Chen, KN .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :775-789
[4]   Double/debiased machine learning for treatment and structural parameters [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Demirer, Mert ;
Duflo, Esther ;
Hansen, Christian ;
Newey, Whitney ;
Robins, James .
ECONOMETRICS JOURNAL, 2018, 21 (01) :C1-C68
[5]  
Dahabreh I. J., 2022, arXiv
[6]   Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population [J].
Dahabreh, Issa J. ;
Robins, James M. ;
Haneuse, Sebastien J. -P. A. ;
Saeed, Iman ;
Robertson, Sarah E. ;
Stuart, Elizabeth A. ;
Hernan, Miguel A. .
STATISTICS IN MEDICINE, 2023, 42 (13) :2029-2043
[7]   Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population [J].
Dahabreh, Issa J. ;
Haneuse, Sebastien J-P A. ;
Robins, James M. ;
Robertson, Sarah E. ;
Buchanan, Ashley L. ;
Stuart, Elizabeth A. ;
Hernan, Miguel A. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) :1632-1642
[8]  
Daniels MJ, 2008, MONOGR STAT APPL PRO, V109, P1
[9]   A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data [J].
Kim, Jae Kwang ;
Yu, Cindy Long .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) :157-165
[10]   Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement [J].
Krist, Alex H. ;
Davidson, Karina W. ;
Mangione, Carol M. ;
Barry, Michael J. ;
Cabana, Michael ;
Caughey, Aaron B. ;
Davis, Esa M. ;
Donahue, Katrina E. ;
Doubeni, Chyke A. ;
Kubik, Martha ;
Landefeld, C. Seth ;
Li, Li ;
Ogedegbe, Gbenga ;
Owens, Douglas K. ;
Pbert, Lori ;
Silverstein, Michael ;
Stevermer, James ;
Tseng, Chien-Wen ;
Wong, John B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (10) :962-970