Electron Paramagnetic Resonance Monitoring of Sodium Clustering and Its Effect on the Sodium Storage of Biowaste-Derived Carbons

被引:1
作者
Kukeva, Rositsa R. [1 ]
Kalapsazova, Mariya [1 ]
Harizanova, Sonya [1 ]
Uzunov, Ivan Markov [1 ]
Markov, Pavel [1 ]
Spassova, Ivanka [1 ]
Stoyanova, Radostina [1 ,2 ]
机构
[1] Bulgarian Acad Sci, Inst Gen & Inorgan Chem, Sofia 1113, Bulgaria
[2] Natl Ctr Excellence Mehatron & Clean Technol, Bldg 29, Sofia 1113, Bulgaria
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 20期
关键词
EPR spectroscopy; hard carbons; spent coffeegrounds; sodium clusters; sodium intercalation; sodium-ion batteries; HARD CARBON; SPIN-RESONANCE; ION BATTERIES; ANODE MATERIALS; COFFEE GROUNDS; PERFORMANCE; MECHANISM; METALS; NMR; EPR;
D O I
10.1021/acsaem.4c02195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biowaste-derived carbons store large amounts of sodium as many competing reactions of adsorption, intercalation, and pore filling take place. Herein, we report electron paramagnetic resonance (EPR) spectroscopy as a comprehensive method to monitor the interaction of sodium with carbons used as electrodes in sodium-ion cells. It is shown that EPR can distinguish signals due to sodium intercalation and sodium cluster growth. Applying the correlation between the EPR line width and the metallic particle dimension, the sodium clusters are quantified regarding their size. In terms of the EPR, we discuss the sodiation mechanism and sodium storage performance of carbons derived from spent coffee grounds. The smallest sodium clusters (below 2 nm) are formed on closed-pore carbons at a potential of 0.01 V, while the largest clusters (around 200 nm) occur on hydrogen-rich carbons at 0.05 V at the earliest. The small sodium clusters generated at around 0.01 V give extra capacity, while sodium intercalation occurring between 0.5 and 0.1 V ensures good cycle stability.
引用
收藏
页码:9543 / 9550
页数:8
相关论文
共 42 条
  • [1] EPR, NMR, and electrochemical studies of surface-modified carbon microbeads
    Alcántara, R
    Ortiz, GF
    Lavela, P
    Tirado, JL
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (09) : 2293 - 2301
  • [2] Tracking Sodium Cluster Dynamics in Hard Carbon with a Low Specific Surface Area for Sodium-Ion Batteries
    Aniskevich, Yauhen
    Yu, Jun Ho
    Kim, Ji-Young
    Komaba, Shinichi
    Myung, Seung-Taek
    [J]. ADVANCED ENERGY MATERIALS, 2024, 14 (18)
  • [3] Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries
    Bobyleva, Zoia V.
    Drozhzhin, Oleg A.
    Dosaev, Kirill A.
    Kamiyama, Azusa
    Ryazantsev, Sergey V.
    Komaba, Shinichi
    Antipov, Evgeny V.
    [J]. ELECTROCHIMICA ACTA, 2020, 354 (354)
  • [4] New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
    Bommier, Clement
    Surta, Todd Wesley
    Dolgos, Michelle
    Ji, Xiulei
    [J]. NANO LETTERS, 2015, 15 (09) : 5888 - 5892
  • [5] Treasure Na-ion anode from trash coke by adept electrolyte selection
    Cabello, Marta
    Chyrka, Taras
    Klee, Rafael
    Aragon, Maria J.
    Bai, Xue
    Lavela, Pedro
    Vasylchenko, Gennadiy M.
    Alcantara, Ricardo
    Tirado, Jose L.
    Ortiz, Gregorio F.
    [J]. JOURNAL OF POWER SOURCES, 2017, 347 : 127 - 135
  • [6] Coffee-Ground-Derived Nanoporous Carbon Anodes for Sodium-Ion Batteries with High Rate Performance and Cyclic Stability
    Chiang, Peng-Hsuan
    Liu, Shih-Fu
    Hung, Yu-Hsuan
    Tseng, Hsin
    Guo, Chun-Han
    Chen, Han-Yi
    [J]. ENERGY & FUELS, 2020, 34 (06) : 7666 - 7675
  • [7] Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders
    Darjazi, Hamideh
    Staffolani, Antunes
    Sbrascini, Leonardo
    Bottoni, Luca
    Tossici, Roberto
    Nobili, Francesco
    [J]. ENERGIES, 2020, 13 (23)
  • [8] Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging
    Dutoit, Charles-Emmanuel
    Tang, Mingxue
    Gourier, Didier
    Tarascon, Jean-Marie
    Vezin, Herve
    Salager, Elodie
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] ELECTRON SPIN RESONANCE ABSORPTION IN METALS .2. THEORY OF ELECTRON DIFFUSION AND THE SKIN EFFECT
    DYSON, FJ
    [J]. PHYSICAL REVIEW, 1955, 98 (02): : 349 - 359
  • [10] ELECTRON SPIN RESONANCE ABSORPTION IN METALS .1. EXPERIMENTAL
    FEHER, G
    KIP, AF
    [J]. PHYSICAL REVIEW, 1955, 98 (02): : 337 - 348