Study on Non-iterative Algorithms for Center-of-Sets Type-Reduction of Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems

被引:2
作者
Zhou, Junge [1 ]
Chen, Yang [1 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval type-2 fuzzy logic systems; Center-of-sets type-reduction; KM algorithms; Non-iterative algorithms; Computational efficiency; CENTROID TYPE-REDUCTION; COMPUTATIONAL COST; NEURAL-NETWORKS; OPTIMIZATION; INTEGRATION; SPEED;
D O I
10.1007/s40815-024-01873-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the application of interval type-2 (IT2) Takagi-Sugeno-Kang (TSK) fuzzy logic systems (FLSs), the center-of-sets (COS) type-reduction (TR) is more advantageous than the centroid TR. This paper proposes three types of discrete non-iterative algorithms to solve the problem of COS TR in IT2 TSK FLSs. Multiple simulation experiments are carried out for the IT2 TSK FLSs with different fuzzy rule numbers. Experimental results show that the computational efficiencies of the three discrete non-iterative algorithms are better than that of Karnik-Mendel (KM) algorithms, which provides latent value for the application of type-2 FLSs.
引用
收藏
页码:2675 / 2687
页数:13
相关论文
共 50 条
[41]   Optimization of Interval Type-2 Fuzzy Logic Controller Using Quantum Genetic Algorithms [J].
Shill, Pintu Chandra ;
Amin, Md. Faijul ;
Akhand, M. A. H. ;
Murase, Kazuyuki .
2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
[42]   Genetic-algorithm-based type reduction algorithm for interval type-2 fuzzy logic controllers [J].
Lu, Tzyy-Chyang .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 42 :36-44
[43]   More Than Accuracy: A Composite Learning Framework for Interval Type-2 Fuzzy Logic Systems [J].
Beke, Aykut ;
Kumbasar, Tufan .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (03) :734-744
[44]   Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons [J].
Wu, Dongrui .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (01) :80-99
[45]   Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms [J].
Chen, Yang ;
Wang, Dazhi .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) :2950-2958
[46]   Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems [J].
Mendez, Gerardo M. ;
Castillo, Oscar ;
Colas, Rafael ;
Moreno, Hector .
APPLIED SOFT COMPUTING, 2014, 24 :900-911
[47]   Model-based control using interval type-2 fuzzy logic systems [J].
Antao, Romulo ;
Mota, Alexandre ;
Martins, Rui Escadas .
SOFT COMPUTING, 2018, 22 (02) :607-620
[48]   Odyssey of Interval Type-2 Fuzzy Logic Systems: Learning Strategies for Uncertainty Quantification [J].
Koklu, Ata ;
Guven, Yusuf ;
Kumbasar, Tufan .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) :468-478
[49]   A new gaussian noise filter based on interval type-2 fuzzy logic systems [J].
S.T. Wang ;
F.L. Chung ;
Y.Y. Li ;
D.W. Hu ;
X.S. Wu .
Soft Computing, 2005, 9 :398-406
[50]   A new gaussian noise filter based on interval type-2 fuzzy logic systems [J].
Wang, ST ;
Chung, FL ;
Li, YY ;
Hu, DW ;
Wu, XS .
SOFT COMPUTING, 2005, 9 (05) :398-406