Near-field terahertz single-pixel imaging with ultralow sampling ratio

被引:3
作者
Chen, Xiaoyin [1 ,2 ]
Li, Jiang [2 ,3 ]
Du, Lianghui [2 ,3 ]
Sun, Changlin [2 ,4 ]
Zhai, Zhaohui [2 ,3 ]
Zhong, Sencheng [2 ,3 ]
Liu, Qiao [2 ,3 ]
Huang, Kun [1 ]
Zhu, Li-Guo [2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Opt & Opt Engn, Hefei 230026, Anhui, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] China Acad Engn Phys, Microsyst & Terahertz Res Ctr, Chengdu 610200, Sichuan, Peoples R China
[4] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Microscale Opt Informat Sci & Tech, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
SPECTROSCOPY;
D O I
10.1364/OE.534249
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we propose what we believe to be a novel reordered Hadamard basis method, namely frequency-domain modulus-correlation Hadamard (FMH), which ensures uniform increment of spatial frequencies in both two orthogonal directions. Both simulated and experimental results reveal that the FMH can significantly decrease required sampling ratio for reconstructing high-quality images, compared with the Sylvester Hadamard and the Walsh Hadamard. By integrating a pseudo-background post-processing technique, we achieve a remarkably low sampling ratio of 4.27% for terahertz image reconstruction, with the Pearson correlation coefficient exceeding 0.9. This advancement resulted in nearly a 5-fold increase in the acquisition rate of near-field terahertz single-pixel imaging, compared with the Walsh Hadamard.
引用
收藏
页码:35126 / 35138
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 1933, Journal of Mathematics and Physics, DOI DOI 10.1002/SAPM1933121311
[2]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[3]   Electro-optic transceivers for terahertz-wave applications [J].
Chen, Q ;
Tani, M ;
Jiang, ZP ;
Zhang, XC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (06) :823-831
[4]   Ghost spintronic THz-emitter-array microscope [J].
Chen, Si-Chao ;
Feng, Zheng ;
Li, Jiang ;
Tan, Wei ;
Du, Liang-Hui ;
Cai, Jianwang ;
Ma, Yuncan ;
He, Kang ;
Ding, Haifeng ;
Zhai, Zhao-Hui ;
Li, Ze-Ren ;
Qiu, Cheng-Wei ;
Zhang, Xi-Cheng ;
Zhu, Li-Guo .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[5]   Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100 [J].
Chen, Si-Chao ;
Du, Liang-Hui ;
Meng, Kun ;
Li, Jiang ;
Zhai, Zhao-Hui ;
Shi, Qi-Wu ;
Li, Ze-Ren ;
Zhu, Li-Guo .
OPTICS LETTERS, 2019, 44 (01) :21-24
[6]   Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications [J].
Chen, Xuequan ;
Lindley-Hatcher, Hannah ;
Stantchev, Rayko I. ;
Wang, Jiarui ;
Li, Kaidi ;
Serrano, Arturo Hernandez ;
Taylor, Zachary D. ;
Castro-Camus, Enrique ;
Pickwell-MacPherson, Emma .
CHEMICAL PHYSICS REVIEWS, 2022, 3 (01)
[7]  
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/nphoton.2013.151, 10.1038/NPHOTON.2013.151]
[8]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[9]  
FINO BJ, 1976, IEEE T COMPUT, V25, P1142, DOI 10.1109/TC.1976.1674569
[10]   Toward real-time terahertz imaging [J].
Guerboukha, Hichem ;
Nallappan, Kathirvel ;
Skorobogatiy, Maksim .
ADVANCES IN OPTICS AND PHOTONICS, 2018, 10 (04) :843-938