Numerical simulation of detonation propagation and extinction in two-phase gas-droplet ammonia fuel

被引:0
作者
Zhu, Ruixuan [1 ]
Li, Guangze [2 ]
Leach, Felix [1 ]
Davy, Martin [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Beihang Univ, Hangzhou Int Innovat Inst, Hangzhou 311115, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-phase ammonia; Detonation propagation; Detonation extinction; Droplet number density; Droplet diameter; Inter-phase interaction; FLAME ACCELERATION; COMBUSTION; MIXTURES; TUBE; SEMIDISCRETE; DEFLAGRATION; INTEGRATION; TRANSITION; DIFFUSION; EMISSIONS;
D O I
10.1016/j.ijhydene.2024.09.432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerical simulations of detonation propagation and extinction in ammonia droplet-laden premixed ammonia- oxygen gas are performed in a 2-D planar channel. The sustained propagation and ultimate quenching of detonation with perturbations from ammonia droplets are observed under lower and larger values of initial droplet number density ( , 0 ) and diameter (0), 0 ), respectively. The detonation always quenches under 0 = 15 mu m. The detonation propagation/extinction behaviour and cell structure are dependent on both 0 and ,0. , 0 . The positive correlations between droplet volume fraction, inter-phase mass, momentum, and energy transfers and 0 are more nonlinear than their counterparts of ,0. , 0 . The post-Mach stem region experiences higher-intensity detonative combustion and thus droplet evaporative, accelerative, and heating effects than the post-incident wave region. During the detonation extinction process, the detonation wave degenerates into detonative spots which then decouple into shock and reaction fronts; gaseous pressure, heat release rate, and nitric oxide volume fraction peaks decline.
引用
收藏
页码:218 / 229
页数:12
相关论文
共 50 条