Versatile braiding of non-Hermitian topological edge states

被引:1
作者
Zhu, Bofeng [1 ]
Wang, Qiang [2 ]
Wang, You [1 ]
Wang, Qi Jie [3 ]
Chong, Y. D. [1 ,4 ]
机构
[1] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 637371, Singapore
[4] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
EXCEPTIONAL POINT; ELECTRONS;
D O I
10.1103/PhysRevB.110.134317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among the most intriguing features of non-Hermitian (NH) systems is the ability of complex energies to form braids under parametric variation. Several braiding behaviors, including link and knot formation, have been observed in experiments on synthetic NH systems, such as looped optical fibers. The exact conditions for these phenomena remain unsettled, but existing demonstrations have involved long-range nonreciprocal hoppings, which are hard to implement on many experimental platforms. Here, we present a route to realizing complex energy braids using one-dimensional NH Aubry-Andr & eacute;-Harper lattices. Under purely local gain and loss modulation, the eigenstates exhibit a variety of braiding behaviors, including unknots, Hopf links, trefoil knots, Solomon links, and catenanes. We show how these are created by the interplay between non-Hermiticity and the lattice's bulk states and topological edge states. The transitions between different braids are marked by changes in the global Berry phase of the NH lattice.
引用
收藏
页数:10
相关论文
共 80 条
[1]  
Adams Colin C., 2004, An elementary introduction to the mathematical theory of knots
[2]  
aps, ABOUT US, DOI [10.1103/PhysRevB.110.134317, DOI 10.1103/PHYSREVB.110.134317]
[3]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[4]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[5]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[6]   Exceptional topology of non-Hermitian systems [J].
Bergholtz, Emil J. ;
Budich, Jan Carl ;
Kunst, Flore K. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
[7]   Tutorial: Computing Topological Invariants in 2D Photonic Crystals [J].
Blanco de Paz, Maria ;
Devescovi, Chiara ;
Giedke, Geza ;
Jose Saenz, Juan ;
Vergniory, Maia G. ;
Bradlyn, Barry ;
Bercioux, Dario ;
Garcia-Etxarri, Aitzol .
ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
[8]   Reversing the pump dependence of a laser at an exceptional point [J].
Brandstetter, M. ;
Liertzer, M. ;
Deutsch, C. ;
Klang, P. ;
Schoeberl, J. ;
Tuereci, H. E. ;
Strasser, G. ;
Unterrainer, K. ;
Rotter, S. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Probing Complex-Energy Topology via Non-Hermitian Absorption Spectroscopy in a Trapped Ion Simulator [J].
Cao, M. -M. ;
Li, K. ;
Zhao, W. -D. ;
Guo, W. -X. ;
Qi, B. -X. ;
Chang, X. -Y. ;
Zhou, Z. -C. ;
Xu, Y. ;
Duan, L. -M. .
PHYSICAL REVIEW LETTERS, 2023, 130 (16)
[10]   Observation of knot topology of exceptional points [J].
Cao, Wenhui ;
Zhang, Weixuan ;
Zhang, Xiangdong .
PHYSICAL REVIEW B, 2024, 109 (16)