共 41 条
[1]
Amoroso N., Diacono D., Fanizzi A., La Rocca M., Monaco A., Lombardi A., Guaragnella C., Bellotti R., Tangaro S., Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge, J. Neurosci. Methods, 302, pp. 3-9, (2018)
[2]
Artero S., Ancelin M., Portet F., Dupuy A., Berr C., Dartigues J., Tzourio C., Rouaud O., Poncet M., Pasquier F., Et al., Risk profiles for mild cognitive impairment and progression to dementia are gender specific, J. Neurol. Neurosurg. Psych., 79, 9, pp. 979-984, (2008)
[3]
Battineni G., Chintalapudi N., Amenta F., Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM), Inform. Med. Unlock., 16, (2019)
[4]
Breiman L., Random forests, Mach. Learn., 45, 1, pp. 5-32, (2001)
[5]
Chen T., He T., Benesty M., Khotilovich V., Tang Y., Xgboost: Extreme Gradient Boosting, pp. 1-4, (2015)
[6]
Clarke R., Smith A.D., Jobst K.A., Refsum H., Sutton L., Ueland P.M., Folate, vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease, Arch. Neurol., 55, 11, pp. 1449-1455, (1998)
[7]
Cooper C., Sommerlad A., Lyketsos C.G., Livingston G., Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis, Amer. J. Psych., 172, 4, pp. 323-334, (2015)
[8]
Cortes C., Vapnik V., Support-vector networks, Mach. Learn., 20, 3, pp. 273-297, (1995)
[9]
Dietterich T.G., An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Mach. Learn., 40, 2, pp. 139-157, (2000)
[10]
Ding Y., Simonoff J.S., An investigation of missing data methods for classification trees applied to binary response data, J. Mach. Learn. Res., 11, (2010)