Li-ion Exchange-Driven Interfacial Buffer Layer for All-Solid-State Lithium Metal Batteries

被引:0
作者
Han, Songyi [1 ,2 ]
Liu, Shuling [1 ]
Chen, Junchao [3 ]
Zhu, Yunpeng [4 ]
Zhang, Jingze [4 ]
Wu, Yongmin [4 ]
Yu, Shangbo [5 ]
Tang, Weiping [3 ,6 ]
Zhu, Lei [4 ,7 ,8 ]
Wang, Xiaowei [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Key Lab Chem Addit China Natl Light Ind, Xian 710021, Peoples R China
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[4] Shanghai Inst Space Power Sources SISP, State Key Lab Space Power Sources, Shanghai 200245, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Organ Chem SIOC, Key Lab Synthet & Selfassembly Chem Organ Funct Mo, Shanghai 200032, Peoples R China
[6] Chinese Acad Sci, Key Lab Green & High End Utilizat Salt Lake Resour, Xining 810008, Peoples R China
[7] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[8] Fudan Univ, Inst New Energy, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium-metal battery; buffer layer; dynamic Li+ transfer; interfacial stability; Li-ion exchange; POLYMER ELECTROLYTE; TRANSPORT; CO;
D O I
10.1002/adfm.202405152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The goal of achieving batteries with high energy density and high safety profile has been a driving force in developing all-solid-state lithium metal batteries (ASSLMBs). However, the complex issues arising from the interfacial interaction between lithium anode/cathode and solid-state electrolytes (SSE) have hindered the progress of ASSLMBs. This study presents a strategy for constructing an organic/inorganic buffer layer via employing Li-ion exchanging chemistry of H1.6Mn1.6O4 (HMO) with a flexible matrix of polyethylene oxide (PEO). The buffer layer shows a remarkable ion conductivity of 3.21 x 10(-4) S cm(-1) at 25 degrees C originating from the exceptional Li+-H+ ion exchange capability of HMO. This PEO/HMO buffer layer not only establishes an intimate physical contact between the Li anode/cathode and the SSE but also functions as a dynamic Li+ transfer station to facilitate Li+ movement through the interfaces improving interfacial stability. By pairing with cathodes of LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811), the ASSLMBs feature high-rate capability and stable cycling performance with low polarization. This marks the utilization of HMO as a superior interfacial material to replace conventional lithium salts, with improved ion transport, decreased polarization, and enhanced overall performances. This constitutes a significant advancement toward the next-generation energy storage solutions for ASSLMBs.
引用
收藏
页数:11
相关论文
共 52 条
[41]   Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries [J].
Yao, Zhongran ;
Zhu, Kongjun ;
Li, Xia ;
Zhang, Jie ;
Li, Jun ;
Wang, Jing ;
Yan, Kang ;
Liu, Jinsong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (10) :11958-11967
[42]   A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries [J].
Yi, Jingguang ;
Yan, Chong ;
Zhou, Dan ;
Fan, Li-Zhen .
NANO RESEARCH, 2023, 16 (06) :8411-8416
[43]   Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries [J].
Yin, Jian-Hong ;
Zhu, Hua ;
Yu, Shi-Jin ;
Dong, Yue-Bing ;
Wei, Quan-Ya ;
Xu, Guo-Qian ;
Xiong, Yan ;
Qian, Yan .
ADVANCED ENGINEERING MATERIALS, 2023, 25 (20)
[44]   High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature [J].
Yin, Junying ;
Xu, Xin ;
Jiang, Sen ;
Wu, Haihua ;
Wei, Lai ;
Li, Yudan ;
He, Jinpeng ;
Xi, Kang ;
Gao, Yunfang .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[45]   Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries [J].
Yoon, Kyungho ;
Lee, Sunyoung ;
Oh, Kyungbae ;
Kang, Kisuk .
ADVANCED MATERIALS, 2022, 34 (04)
[46]   Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries [J].
Yu, Shicheng ;
Schmohl, Sebastian ;
Liu, Zigeng ;
Hoffmeyer, Marija ;
Schoen, Nino ;
Hausen, Florian ;
Tempel, Hermann ;
Kungl, Hans ;
Wiemhoefer, Hans-D. ;
Eichel, Ruediger-A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3882-3894
[47]   A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries [J].
Yuan, Boheng ;
Zhao, Bin ;
Wang, Qi ;
Bai, Yuge ;
Cheng, Zhiwei ;
Cong, Zhi ;
Lu, Yafei ;
Ji, Fangdi ;
Shen, Fei ;
Wang, Peng-Fei ;
Han, Xiaogang .
ENERGY STORAGE MATERIALS, 2022, 47 :288-296
[48]   Al and F ions co-modified Li1.6Mn1.6O4 with obviously enhanced Li plus adsorption performances [J].
Zhang, Guotai ;
Hai, Chunxi ;
Zhou, Yuan ;
Tang, Weiping ;
Zhang, Jingze ;
Zeng, Jinbo ;
Liu, Yanhua ;
Dong, Shengde ;
Peng, Guiping .
CHEMICAL ENGINEERING JOURNAL, 2022, 450
[49]   Practical synthesis of manganese oxide MnO2•0.5H2O for an advanced and applicable lithium ion-sieve [J].
Zhang, Guotai ;
Zhang, Jingze ;
Zhou, Yuan ;
Qi, Guicai ;
Zeng, Jinbo ;
Sun, Yanxia ;
Shen, Yue ;
Li, Xiang ;
Ren, Xiufeng ;
Dong, Shengde ;
Sun, Chao ;
Wu, Zhaowei ;
Hai, Chunxi ;
Tang, Weiping .
JOURNAL OF SOLID STATE CHEMISTRY, 2021, 293
[50]   Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy [J].
Zhang, Yirui ;
Katayama, Yu ;
Tatara, Ryoichi ;
Giordano, Livia ;
Yu, Yang ;
Fraggedakis, Dimitrios ;
Sun, Jame Guangwen ;
Maglia, Filippo ;
Jung, Roland ;
Bazant, Martin Z. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (01) :183-199