Li-ion Exchange-Driven Interfacial Buffer Layer for All-Solid-State Lithium Metal Batteries

被引:0
作者
Han, Songyi [1 ,2 ]
Liu, Shuling [1 ]
Chen, Junchao [3 ]
Zhu, Yunpeng [4 ]
Zhang, Jingze [4 ]
Wu, Yongmin [4 ]
Yu, Shangbo [5 ]
Tang, Weiping [3 ,6 ]
Zhu, Lei [4 ,7 ,8 ]
Wang, Xiaowei [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Key Lab Chem Addit China Natl Light Ind, Xian 710021, Peoples R China
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[4] Shanghai Inst Space Power Sources SISP, State Key Lab Space Power Sources, Shanghai 200245, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Organ Chem SIOC, Key Lab Synthet & Selfassembly Chem Organ Funct Mo, Shanghai 200032, Peoples R China
[6] Chinese Acad Sci, Key Lab Green & High End Utilizat Salt Lake Resour, Xining 810008, Peoples R China
[7] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[8] Fudan Univ, Inst New Energy, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium-metal battery; buffer layer; dynamic Li+ transfer; interfacial stability; Li-ion exchange; POLYMER ELECTROLYTE; TRANSPORT; CO;
D O I
10.1002/adfm.202405152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The goal of achieving batteries with high energy density and high safety profile has been a driving force in developing all-solid-state lithium metal batteries (ASSLMBs). However, the complex issues arising from the interfacial interaction between lithium anode/cathode and solid-state electrolytes (SSE) have hindered the progress of ASSLMBs. This study presents a strategy for constructing an organic/inorganic buffer layer via employing Li-ion exchanging chemistry of H1.6Mn1.6O4 (HMO) with a flexible matrix of polyethylene oxide (PEO). The buffer layer shows a remarkable ion conductivity of 3.21 x 10(-4) S cm(-1) at 25 degrees C originating from the exceptional Li+-H+ ion exchange capability of HMO. This PEO/HMO buffer layer not only establishes an intimate physical contact between the Li anode/cathode and the SSE but also functions as a dynamic Li+ transfer station to facilitate Li+ movement through the interfaces improving interfacial stability. By pairing with cathodes of LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811), the ASSLMBs feature high-rate capability and stable cycling performance with low polarization. This marks the utilization of HMO as a superior interfacial material to replace conventional lithium salts, with improved ion transport, decreased polarization, and enhanced overall performances. This constitutes a significant advancement toward the next-generation energy storage solutions for ASSLMBs.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Current Status and Future Perspective on Lithium Metal Anode Production Methods [J].
Acebedo, Begona ;
Morant-Minana, Maria C. ;
Gonzalo, Elena ;
de Larramendi, Idoia Ruiz ;
Villaverde, Aitor ;
Rikarte, Jokin ;
Fallarino, Lorenzo .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[2]   A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries [J].
Bandyopadhyay, Sumana ;
Nandan, Bhanu .
MATERIALS TODAY ENERGY, 2023, 31
[3]   Imidazolium-Type Poly(ionic liquid) Endows the Composite Polymer Electrolyte Membrane with Excellent Interface Compatibility for All- Solid-State Lithium Metal Batteries [J].
Bao, Wei ;
Fan, Weizhen ;
Luo, Jin ;
Huo, Shikang ;
Hu, Zhenyuan ;
Jing, Xiao ;
Chen, Weijie ;
Long, Xinyang ;
Zhang, Yunfeng .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (50) :55664-55673
[4]   Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries [J].
Bao, Wei ;
Hu, Zhenyuan ;
Wang, Yaying ;
Jiang, Jianghong ;
Huo, Shikang ;
Fan, Weizhen ;
Chen, Weijie ;
Jing, Xiao ;
Long, Xinyang ;
Zhang, Yunfeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 437
[5]   Interactions of Oxide Surfaces with Water Revealed with Solid-State NMR Spectroscopy [J].
Chen, Junchao ;
Hope, Michael A. ;
Lin, Zhiye ;
Wang, Meng ;
Liu, Tao ;
Halat, David M. ;
Wen, Yujie ;
Chen, Teng ;
Ke, Xiaokang ;
Magusin, Pieter C. M. M. ;
Ding, Weiping ;
Xia, Xifeng ;
Wu, Xin-Ping ;
Gong, Xue-Qing ;
Grey, Clare P. ;
Peng, Luming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (25) :11173-11182
[6]   Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy [J].
Chen, Junchao ;
Wu, Xin-Ping ;
Hope, Michael A. ;
Qian, Kun ;
Halat, David M. ;
Liu, Tao ;
Li, Yuhong ;
Shen, Li ;
Ke, Xiaokang ;
Wen, Yujie ;
Du, Jia-Huan ;
Magusin, Pieter C. M. M. ;
Paul, Subhradip ;
Ding, Weiping ;
Gong, Xue-Qing ;
Grey, Clare P. ;
Peng, Luming .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating [J].
Cheng, Qian ;
Li, Aijun ;
Li, Na ;
Li, Shuang ;
Zangiabadi, Amirali ;
Li, Tai-De ;
Huang, Wenlong ;
Li, Alex Ceng ;
Jin, Tianwei ;
Song, Qingquan ;
Xu, Weiheng ;
Ni, Nan ;
Zhai, Haowei ;
Dontigny, Martin ;
Zaghib, Karim ;
Chuan, Xiuyun ;
Su, Dong ;
Yan, Kai ;
Yang, Yuan .
JOULE, 2019, 3 (06) :1510-1522
[8]   Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4 [J].
Chitrakar, R ;
Kanoh, H ;
Miyai, Y ;
Ooi, K .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (09) :2054-2058
[9]   Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization [J].
Dai, Jiaqi ;
Yang, Chunpeng ;
Wang, Chengwei ;
Pastel, Glenn ;
Hu, Liangbing .
ADVANCED MATERIALS, 2018, 30 (48)
[10]   Mixed ionic and electronic conducting binders containing PEDOT:PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes [J].
del Olmo, Rafael ;
Mendes, Tiago C. ;
Forsyth, Maria ;
Casado, Nerea .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (37) :19777-19786