A local projection stabilised HHO method for the Oseen problem

被引:0
作者
Mallik, Gouranga [1 ]
Biswas, Rahul [2 ]
Gudi, Thirupathi [2 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, India
关键词
Oseen problem; Local Projection Stabilisation (LPS); Hybrid High-Order (HHO); HYBRID HIGH-ORDER; FINITE-ELEMENT-METHOD; DISCONTINUOUS-SKELETAL METHOD; ADVECTION-DIFFUSION-REACTION; LINEAR ELASTICITY; DIFFERENCE METHOD; ELLIPTIC PROBLEMS; GENERAL MESHES; STOKES; GALERKIN;
D O I
10.1016/j.camwa.2024.10.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.
引用
收藏
页码:202 / 220
页数:19
相关论文
共 54 条
  • [1] An Advection-Robust Hybrid High-Order Method for the Oseen Problem
    Aghili, Joubine
    Di Pietro, Daniele A.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1310 - 1338
  • [2] [Anonymous], 2004, Applied Mathematical Sciences
  • [3] MULTISCALE HYBRID-MIXED METHOD
    Araya, Rodolfo
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3505 - 3531
  • [4] Becker R, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P123
  • [5] A finite element pressure gradient stabilization for the Stokes equations based on local projections
    Becker, R
    Braack, M
    [J]. CALCOLO, 2001, 38 (04) : 173 - 199
  • [6] SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations
    Berrone, S.
    Borio, A.
    Manzini, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 500 - 529
  • [7] Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem
    Biswas, Rahul
    Dond, Asha K.
    Gudi, Thirupathi
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (02) : 189 - 214
  • [8] ANALYSIS OF COMPATIBLE DISCRETE OPERATOR SCHEMES FOR ELLIPTIC PROBLEMS ON POLYHEDRAL MESHES
    Bonelle, Jerome
    Ern, Alexandre
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 553 - 581
  • [9] Stabilized finite elements for 3D reactive flows
    Braack, M.
    Richter, Th.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 51 (9-10) : 981 - 999
  • [10] Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method
    Braack, M
    Burman, E
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) : 2544 - 2566