Improving diagnostics and prognostics of implantable cardioverter defibrillator batteries with interpretable machine learning models

被引:0
|
作者
Galuppini, Giacomo [1 ,3 ]
Liang, Qiaohao [1 ]
Tamirisa, Prabhakar A. [2 ]
Lemmerman, Jeffrey A. [2 ]
Sullivan, Melani G. [2 ]
Mazack, Michael J. M. [2 ]
Gomadam, Partha M. [2 ]
Bazant, Martin Z. [1 ]
Braatz, Richard D. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Medtron Energy & Component Ctr, Brooklyn Ctr, MN USA
[3] Univ Pavia, Pavia, PV, Italy
关键词
Batteries; Defibrillators; Machine learning; Generalized additive models; Diagnostics; Prognostics; LITHIUM-ION BATTERIES; RESISTANCE; CELLS;
D O I
10.1016/j.jpowsour.2024.234668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Medtronic Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchronization Therapy Defibrillators (CRT-Ds) rely on high-energy density, lithium batteries, which are manufactured with a special lithium/carbon monofluoride (CFx)-silver F x )-silver vanadium oxide (SVO) hybrid cathode design. Consistently high battery performance is crucial for this application, since poor performance may result in ineffective patient treatment, whereas early replacement may involve surgery and increase in maintenance costs. To evaluate performance, batteries are tested, both at the time of production and post-production, through periodic sampling carried out over multiple years. This considerable amount of experimental data is exploited for the first time in this work to develop a data-driven, machine learning approach, relying on Generalized Additive Models (GAMs) to predict battery performance, based on production data. GAMs combine prediction accuracy, which enables evaluation of battery performance immediately after production, with model interpretability, which provides clues on how to further improve battery design and production. Model interpretation allows to identify key features from the battery production data that offer physical insights to support future battery development, and foster the development of physics-based model for hybrid cathode batteries. The proposed approach is validated on 21 different datasets, targeting several performance-related features, and delivers consistently high prediction accuracy on test data.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters
    Hansen, Cooper K.
    Whelan, Gary F.
    Hochhalter, Jacob D.
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 178
  • [32] Reliable prediction of software defects using Shapley interpretable machine learning models
    Al-Smadi, Yazan
    Eshtay, Mohammed
    Al-Qerem, Ahmad
    Nashwan, Shadi
    Ouda, Osama
    Abd El-Aziz, A. A.
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (03)
  • [33] Interpretable machine learning models for predicting and explaining vehicle fuel consumption anomalies
    Barbado, Alberto
    Corcho, Oscar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [34] Interpretable ensemble machine learning models for predicting the shear capacity of UHPC joints
    Ye, Meng
    Li, Lifeng
    Jin, Weimeng
    Tang, Jiahao
    Yoo, Doo-Yeol
    Zhou, Cong
    ENGINEERING STRUCTURES, 2024, 315
  • [35] Impact of sampling for landslide susceptibility assessment using interpretable machine learning models
    Wu, Bin
    Shi, Zhenming
    Zheng, Hongchao
    Peng, Ming
    Meng, Shaoqiang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (11)
  • [36] Interpretable machine learning models for prolonged Emergency Department wait time prediction
    Wang, Hao
    Sambamoorthi, Nethra
    Sandlin, Devin
    Sambamoorthi, Usha
    BMC HEALTH SERVICES RESEARCH, 2025, 25 (01)
  • [37] Interpretable Ensemble-Machine-Learning models for predicting creep behavior of concrete
    Liang, Minfei
    Chang, Ze
    Wan, Zhi
    Gan, Yidong
    Schlangen, Erik
    Savija, Branko
    CEMENT & CONCRETE COMPOSITES, 2022, 125
  • [38] Explainable Machine Learning for Improving Logistic Regression Models
    Yang, Yimin
    Wu, Min
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [39] Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering
    Bai, Guangxing
    Su, Yunsheng
    Rahman, Maliha Maisha
    Wang, Zequn
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 231
  • [40] Untangling Degradation Chemistries of Lithium-Sulfur Batteries Through Interpretable Hybrid Machine Learning
    Liu, Xinyan
    Peng, Hong-Jie
    Li, Bo-Quan
    Chen, Xiang
    Li, Zheng
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (48)