Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN

被引:1
|
作者
Shen, Lingyun [1 ]
Lang, Baihe [2 ]
Song, Zhengxun [2 ,3 ]
机构
[1] Taiyuan Inst Technol, Dept Elect Engn, Taiyuan 030008, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130022, Peoples R China
[3] Changchun Univ Sci & Technol, Overseas Expertise Intro Project Discipline Innova, Changchun 130022, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Object detection; feature extraction; attention mechanism; remote sensing; NETWORK; ATTENTION;
D O I
10.1109/ACCESS.2024.3487492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the challenges of object detection in complex remote sensing imagery, where the YOLO backbone network struggles with adaptive learning of feature distributions, leading to insufficient multi-scale feature learning capabilities and low detection accuracy for small and occluded objects, the lightweight Enhanced YOLOv8 with WBiFPN (Weighted Bidirectional Feature Pyramid Network) model is introduced in this paper. This model is designed to enhance multi-scale feature learning performance. It incorporates a feature fusion network based on WBiFPN and introduces the EMA (Efficient Multi-Scale Attention Module) to strengthen the representation of semantic and spatial information, thereby deepening the integration of multi-scale features. The model integrates RepConv (Re-parameterized Convolution) and ConvNeXt C2f in the shallow layers of the backbone network to optimize feature extraction, while the deeper layers include a BoT (Bottleneck Transformer Model) to further enhance multi-scale feature extraction capabilities. To reduce model parameters and computational complexity, the neck network employs a simplified Slim-Neck structure. Experimental results demonstrate that the Enhanced YOLOv8 model exhibits superior performance. Compared to the YOLOv8-n/s/m/l/x series models, the proposed model achieves mean Average Precision (mAP@0.5) of 94.8%, 91.6%, and 82.0% on the NWPU VHR-10, DIOR, and DOTA datasets, respectively, representing improvements of 3.2%, 2.5%, and 2.5%. The average inference speeds are 82 fps, 79 fps, and 76 fps, meeting the real-time requirements of inference. Furthermore, the Enhanced YOLOv8 model outperforms other mainstream models in detection performance.
引用
收藏
页码:158239 / 158257
页数:19
相关论文
共 50 条
  • [41] Underwater object detection by integrating YOLOv8 and efficient transformer
    Liu, Jing
    Sun, Kaiqiong
    Ye, Xiao
    Yun, Yaokun
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [42] Research on object detection and recognition in remote sensing images based on YOLOv11
    Lu-hao He
    Yong-zhang Zhou
    Lei Liu
    Wei Cao
    Jian-hua Ma
    Scientific Reports, 15 (1)
  • [43] Improved YOLOv8 Model for a Comprehensive Approach to Object Detection and Distance Estimation
    Khow, Zu Jun
    Tan, Yi-Fei
    Karim, Hezerul Abdul
    Rashid, Hairul Azhar Abdul
    IEEE ACCESS, 2024, 12 : 63754 - 63767
  • [44] YOLOv8-Rice: a rice leaf disease detection model based on YOLOv8
    Lu, Yu
    Yu, Jinghu
    Zhu, Xingfei
    Zhang, Bufan
    Sun, Zhaofei
    PADDY AND WATER ENVIRONMENT, 2024, 22 (04) : 695 - 710
  • [45] DPH-YOLOv8: Improved YOLOv8 Based on Double Prediction Heads for the UAV Image Object Detection
    Wang, Jian
    Li, Xinqi
    Chen, Jiafu
    Zhou, Lihui
    Guo, Linyang
    He, Zihao
    Zhou, Hao
    Zhang, Zechen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [46] SOD-YOLOv10: Small Object Detection in Remote Sensing Images Based on YOLOv10
    Sun, Hui
    Yao, Guangzhen
    Zhu, Sandong
    Zhang, Long
    Xu, Hui
    Kong, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [47] A Universal Tire Detection Method Based on Improved YOLOv8
    Guo, Chi
    Chen, Mingxia
    Wu, Junjie
    Hu, Haipeng
    Huang, Luobing
    Li, Junjie
    IEEE ACCESS, 2024, 12 : 174770 - 174781
  • [48] Infrared Image Object Detection Algorithm for Substation Equipment Based on Improved YOLOv8
    Xiang, Siyu
    Chang, Zhengwei
    Liu, Xueyuan
    Luo, Lei
    Mao, Yang
    Du, Xiying
    Li, Bing
    Zhao, Zhenbing
    ENERGIES, 2024, 17 (17)
  • [49] IMPROVEMENT OF YOLOV8 OBJECT DETECTION BASED ON LIGHTWEIGHT NECK MODEL FOR COMPLEX IMAGES
    Sung, Tien-Wen
    Li, Jie
    Lee, Chao-Yang
    Fang, Qingjun
    IMAGE ANALYSIS & STEREOLOGY, 2025, 44 (01) : 69 - 86
  • [50] ESD-YOLOv8: An Efficient Solar Cell Fault Detection Model Based on YOLOv8
    Zhang, Lingyun
    Wu, Xu
    Liu, Zihan
    Yu, Panlin
    Yang, Mingfen
    IEEE ACCESS, 2024, 12 : 138801 - 138815