Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying

被引:0
|
作者
Tian, Yun [1 ,2 ]
Liu, Jianing [1 ,2 ]
Xue, Mingming [1 ,2 ]
Zhang, Dongyao [1 ,2 ]
Wang, Yuxin [1 ,2 ]
Geng, Keping [3 ]
Dong, Yanchun [1 ,2 ]
Yang, Yong [1 ,2 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300132, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Key Lab New Type Funct Mat Hebei Prov, Tianjin 300132, Peoples R China
[3] Tianjin Sino German Univ Appl Sci, Sch Mech Engn, Tianjin 300132, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy alloy coatings; plasma spray; mechanical alloying; microstructure; corrosion behavior; mechanical property; MICROSTRUCTURE; INDENTATION; FILMS;
D O I
10.1007/s12613-024-2902-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy (HEA) coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and prepare uniform HEA coatings. Scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry were employed to characterize these coatings' microstructure and phase composition. The hardness, elastic modulus, and fracture toughness of coatings were tested, and the corrosion resistance was analyzed in simulated seawater. Results show that the hardness of the coating is HV0.1 606.15, the modulus of elasticity is 128.42 GPa, and the fracture toughness is 43.98 MPa<middle dot>m1/2. The corrosion potential of the coating in 3.5wt% NaCl solution is -0.49 V, and the corrosion current density is 1.2 x 10-6 A/cm2. The electrochemical system comprises three parts: the electrolyte, the adsorption and metallic oxide films produced during immersion, and the FeCoNiCrMo HEA coating. Over increasingly long periods, the corrosion reaction rate increases first and then decreases, the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution, and the internal reaction of the coating declines.
引用
收藏
页码:2692 / 2705
页数:14
相关论文
共 50 条
  • [41] AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding: Microstructure, mechanical and corrosion properties
    Fan, Qingkai
    Chen, Chao
    Fan, Chenglei
    Liu, Zeng
    Cai, Xiaoyu
    Lin, Sanbao
    Yang, Chunli
    INTERMETALLICS, 2021, 138
  • [42] Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering
    Salemi, F.
    Karimzadeh, F.
    Abbasi, M. H.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (05): : 1947 - 1962
  • [43] Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering
    F. Salemi
    F. Karimzadeh
    M. H. Abbasi
    Metallurgical and Materials Transactions A, 2021, 52 : 1947 - 1962
  • [44] FeSiBAlNiMo High Entropy Alloy Prepared by Mechanical Alloying
    Bures, R.
    Hadraba, H.
    Faberova, M.
    Kollar, P.
    Fuzer, J.
    Roupcova, P.
    Streckova, M.
    ACTA PHYSICA POLONICA A, 2017, 131 (04) : 771 - 773
  • [45] Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOF
    Martin Löbel
    Thomas Lindner
    Thomas Mehner
    Lisa-Marie Rymer
    Stefan Björklund
    Shrikant Joshi
    Thomas Lampke
    Journal of Thermal Spray Technology, 2022, 31 : 247 - 255
  • [46] Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOF
    Loebel, Martin
    Lindner, Thomas
    Mehner, Thomas
    Rymer, Lisa-Marie
    Bjorklund, Stefan
    Joshi, Shrikant
    Lampke, Thomas
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2022, 31 (1-2) : 247 - 255
  • [47] Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy
    Ji, Wei
    Fu, Zhengyi
    Wang, Weimin
    Wang, Hao
    Zhang, Jinyong
    Wang, Yucheng
    Zhang, Fan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 589 : 61 - 66
  • [48] Improving microstructure and frictional wear behavior of plasma cladding FeCoCrNiMo high-entropy alloy layers by annealing treatment
    Yu, Huishu
    Li, Deyuan
    Ma, Mingtao
    Zheng, Bowen
    Zuo, Xiaojiao
    You, Jiaqing
    Zhang, Nannan
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [49] Microstructure and Tribological Properties of FeCoCrNi High-Entropy Alloy Coatings Fabricated by Atmospheric Plasma Spraying
    Y. M. Wang
    L. Xie
    X. L. Wu
    C. L. Li
    P. Zhou
    Journal of Materials Engineering and Performance, 2023, 32 : 3475 - 3486
  • [50] Microstructure and Tribological Properties of FeCoCrNi High-Entropy Alloy Coatings Fabricated by Atmospheric Plasma Spraying
    Wang, Y. M.
    Xie, L.
    Wu, X. L.
    Li, C. L.
    Zhou, P.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (08) : 3475 - 3486