Study on pyrolysis behavior of municipal sludge based on TG-FTIR-MS

被引:5
|
作者
Zhou, Ao [1 ]
Deng, Nan [2 ]
Deng, Shuanghui [1 ]
Hu, Zhongfa [3 ]
Magdziarz, Aneta [4 ]
Tan, Houzhang [1 ]
Wang, Xuebin [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermo Fluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Instrumental Anal Ctr, Xian 710049, Shaanxi, Peoples R China
[3] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
[4] AGH Univ Krakow, Krakow, Poland
关键词
Municipal sludge; Pyrolysis; Reaction kinetics; Nitrogen migration; SEWAGE-SLUDGE; CO-PYROLYSIS; HEAVY-METALS; SOLID-WASTE; PY-GC/MS; KINETICS; CARBONIZATION; INCINERATION; COMBUSTION; MICROALGAE;
D O I
10.1016/j.joei.2024.101643
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sludge pyrolysis, as a new sludge disposal technology, can realize the reduction and resource utilization of municipal sludge. Based on TG-FTIR-MS technology, pyrolysis behaviors such as pyrolysis reaction kinetics, pyrolysis product composition and other pyrolysis behaviors of four common municipal sludges (SD, NJ, CS, TJ) at different pyrolysis rates were investigated in this paper, and the migration and transformation of nitrogen elements in municipal sludge were analyzed. The results showed that the pyrolysis of municipal sludge was mainly divided into three stages: dewatering (below 160 degrees C), volatile decomposition (160-550 degrees C), and carbonization stage (550-900 degrees C). The activation energies of the four sludge pyrolysis stages were 189.75 kJ/ mol, 138.13 kJ/mol, 300.76 kJ/mol, and 237.83 kJ/mol, respectively. It was found that the sludge pyrolysis stage followed the stochastic nucleation and subsequent growth mechanism through the study of SD and CS sludge. The pyrolysis gaseous product content was affected by the rate of heating and pyrolysis temperature. Moderate temperatures (400-550 degrees C) favored complete sludge decomposition. Sludge is more likely to decompose in a narrow temperature range at higher heating rates, and increasing the heating rate accelerates sludge decomposition. The nitrogenous compounds in sludge are mainly pyrrole nitrogen, protein nitrogen, and pyridine nitrogen. During sludge pyrolysis, the nitrogenous compounds decompose and precipitate in the form of heterocyclic nitrogen (pyridine, pyrrole), and release small molecules of nitrogenous compounds (NH3, HCN, HCNO). The experimental results can provide a reference for the disposal of municipal sludge by pyrolysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS
    Fang, Shiwen
    Yu, Zhaosheng
    Ma, Xiaoqian
    Lin, Yan
    Lin, Yousheng
    Chen, Lin
    Fan, Yunlong
    Liao, Yanfen
    ENERGY CONVERSION AND MANAGEMENT, 2017, 144 : 114 - 122
  • [42] Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis
    Xu, Xinyang
    Zhao, Bing
    Sun, Manli
    Chen, Xi
    Zhang, Mingchuan
    Li, Haibo
    Xu, Shucong
    WASTE MANAGEMENT, 2017, 62 : 91 - 100
  • [43] Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS
    Jiang, Yuan
    Zong, Peijie
    Tian, Bin
    Xu, Fanfan
    Tian, Yuanyu
    Qiao, Yingyun
    Zhang, Jinhong
    ENERGY CONVERSION AND MANAGEMENT, 2019, 179 : 72 - 80
  • [44] Pyrolysis Characteristic of Tobacco Stem Studied by Py-GC/MS, TG-FTIR, and TG-MS
    Liu, Bei
    Li, You-Ming
    Wu, Shu-Bin
    Li, Yan-Heng
    Deng, Shan-Shan
    Xia, Zheng-Lin
    BIORESOURCES, 2013, 8 (01): : 220 - 230
  • [45] TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust
    Gao, Ningbo
    Li, Aimin
    Quan, Cui
    Du, Lin
    Duan, Yue
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 100 : 26 - 32
  • [46] The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS
    Bi, Haobo
    Ni, Zhanshi
    Tian, Junjian
    Wang, Chengxin
    Jiang, Chunlong
    Zhou, Wenliang
    Bao, Lin
    Sun, Hao
    Lin, Qizhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 798
  • [47] Enhanced energy efficiency and fast co-pyrolysis characteristics of biogas residues and long-flame coal using infrared heating and TG-FTIR-MS
    Zeng, Yongfu
    Liu, Zuohua
    Yu, Jianglong
    Hu, Erfeng
    Li, Shuai
    Jia, Xin
    Tian, Yishui
    Wang, Chao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 189 : 414 - 424
  • [48] Pyrolysis of lignin (De-alkaline) via TG/DSC-FTIR and TG-MS: pyrolysis characteristics, thermo-kinetics, and gas products
    Huang, Xiankun
    Yin, Hongchao
    Zhang, Bin
    Mei, Ning
    Mu, Lin
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (01) : 795 - 812
  • [49] Thermochemical Remediation of Petroleum-Contaminated Soil: TG-FTIR-MS Analysis and Residue Characteristics
    Jiang, Wenguang
    Li, Xiangguo
    Miao, Wenjuan
    Lv, Yang
    Cai, Lixiong
    Luo, Shugiong
    Jiang, Dongbing
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05)
  • [50] RDF pyrolysis by TG-FTIR and Py-GC/MS and combustion in a double furnaces reactor
    Chen, Xiaolin
    Xie, Junlin
    Mei, Shuxia
    He, Feng
    Yang, Hu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (02) : 893 - 902