Stamping Flexible Li Alloy Anodes

被引:91
作者
Gao J. [1 ]
Chen C. [1 ]
Dong Q. [1 ]
Dai J. [1 ]
Yao Y. [1 ]
Li T. [1 ]
Rundlett A. [1 ]
Wang R. [1 ]
Wang C. [1 ]
Hu L. [1 ]
机构
[1] Department of Materials Science and Engineering, University of Maryland, College Park, 20742, MD
关键词
flexible batteries; Li anodes; Li dendrites; Li-metal batteries; stamping;
D O I
10.1002/adma.202005305
中图分类号
学科分类号
摘要
Li metal holds great promise to be the ultimate anode choice owing to its high specific capacity and low redox potential. However, processing Li metal into thin-film anode with high electrochemical performance and good safety to match commercial cathodes remains challenging. Herein, a new method is reported to prepare ultrathin, flexible, and high-performance Li–Sn alloy anodes with various shapes on a number of substrates by directly stamping a molten metal solution. The printed anode is as thin as 15 µm, corresponding to an areal capacity of ≈3 mAh cm–2 that matches most commercial cathode materials. The incorporation of Sn provides the nucleation center for Li, thereby mitigating Li dendrites as well as decreasing the overpotential during Li stripping/plating (e.g., <10 mV at 0.25 mA cm–2). As a proof-of-concept, a flexible Li-ion battery using the ultrathin Li–Sn alloy anode and a commercial NMC cathode demonstrates good electrochemical performance and reliable cell operation even after repetitive deformation. The approach can be extended to other metal/alloy anodes such as Na, K, and Mg. This study opens a new door toward the future development of high-performance ultrathin alloy-based anodes for next-generation batteries. © 2021 Wiley-VCH GmbH
引用
收藏
相关论文
共 50 条
[1]  
Lin D., Liu Y., Cui Y., Nat. Nanotechnol., 12, (2017)
[2]  
Cheng X.B., Zhang R., Zhao C.Z., Zhang Q., Chem. Rev., 117, (2017)
[3]  
Cao Y., Li M., Lu J., Liu J., Amine K., Nat. Nanotechnol., 14, (2019)
[4]  
Xu S.-M., Duan H., Shi J.-L., Zuo T.-T., Hu X.-C., Lang S.-Y., Yan M., Liang J.-Y., Yang Y.-G., Kong Q.-H., Zhang X., Guo Y.-G., Nano Res., 13, (2020)
[5]  
Li Q., Zhu S., Lu Y., Adv. Funct. Mater., 27, (2017)
[6]  
Cui Y., Wan J., Ye Y., Liu K., Chou L.Y., Cui Y., Nano Lett., 20, (2020)
[7]  
Shin D.M., Bachman J.E., Taylor M.K., Kamcev J., Park J.G., Ziebel M.E., Velasquez E., Jarenwattananon N.N., Sethi G.K., Cui Y., Long J.R., Adv. Mater., 32, (2020)
[8]  
Zhao C.Z., Zhao Q., Liu X., Zheng J., Stalin S., Zhang Q., Archer L.A., Adv. Mater., 32, (2020)
[9]  
Li A., Liao X., Zhang H., Shi L., Wang P., Cheng Q., Borovilas J., Li Z., Huang W., Fu Z., Dontigny M., Zaghib K., Myers K., Chuan X., Chen X., Yang Y., Adv. Mater., 32, (2020)
[10]  
Cao D., Zhang Q., Hafez A.M., Jiao Y., Ma Y., Li H., Cheng Z., Niu C., Zhu H., Small Methods, 3, (2019)