Discrete element analysis of geosynthetic-reinforced pile-supported embankments

被引:7
|
作者
Wang, Kangyu [1 ,2 ]
Cao, Jun [1 ]
Ye, Jiahuan [1 ]
Qiu, Ziliang [1 ]
Wang, Xinquan [3 ,4 ,5 ]
机构
[1] Zhejiang Univ Technol, Sch Civil Engn, Hangzhou 310014, Peoples R China
[2] Zhejiang Key Lab Civil Engn Struct & Disaster Prev, Hangzhou 310014, Peoples R China
[3] Hangzhou City Univ, Dept Civil Engn, Hangzhou 310015, Peoples R China
[4] Key Lab Safe Construct & Intelligent Maintenance U, Hangzhou 310015, Peoples R China
[5] Zhejiang Engn Res Ctr Intelligent Urban Infrastruc, Hangzhou 310015, Peoples R China
关键词
Soil arching effect; MatDEM; Discrete element method; Geosynthetic; NUMERICAL-ANALYSIS; ANALYTICAL-MODELS; PERFORMANCE; 2D; EVOLUTION; COLUMNS; DESIGN;
D O I
10.1016/j.conbuildmat.2024.138448
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A discrete element trapdoor model was established using the MatDEM software, and the effects of different embankment and reinforcement heights on the soil arching effect of embankments under reinforced conditions were investigated by introducing a biaxial geogrid. The outcomes demonstrated that the inclusion of a geosynthetic reinforcement could enhance the load transfer efficacy of the embankment and thereby reduce the differential settlement of the embankment surface. The differential settlement could be reduced by approximately 50 % when the reinforcement height and the pile cap were close. The inclusion of the geosynthetic reinforcement helped reduce the development of the slip surface within the embankment above the reinforcement and prevented the vertical slip surface from continuing to move upwards, thus ensuring that the soil arching effect did not degrade too quickly and continued to play a role. In the case of a low embankment reinforcement, the soil arching effect was largely nonfunctional because of the rapid development of the vertical slip surface, and the load on the embankment in the soft soil was mainly transferred to the piles through the tensioned membrane effect of the geosynthetic reinforcement. For a high embankment with a low reinforcement height, the soil arch structure of the embankment was well maintained, the soil arching effect did not degrade, and the load on the embankment in the upper part of the soft soil was transferred to the piles via the soil arching effect along with the tensioned membrane effect. In the case of a high embankment with a high reinforcement, the reinforcement blocked the vertical slip surface only for the soil above the reinforcement height, whereas the vertical slip surface below the reinforcement height developed in line with that of the same height, when the tensioned membrane effect and soil arching effect worked together in the embankment above the reinforcement height, and the soil arching effect below the reinforcement height degraded and hardly played a role.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Probabilistic analysis of geosynthetic-reinforced and pile-supported embankments
    Guo, Xiangfeng
    Pham, Tuan A.
    Dias, Daniel
    COMPUTERS AND GEOTECHNICS, 2022, 142
  • [2] Analysis of Load Transfer in Geosynthetic-Reinforced Pile-Supported Embankments
    Yan, Muhan
    Song, Xuguo
    Xiao, Hong
    Guo, Shuaijie
    Zhang, Haiyang
    Chango, Ishola Valere Loic
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 354 - 358
  • [3] Geosynthetic-reinforced pile-supported embankments: state of the art
    van Eekelen, S. J. M.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (02) : 112 - 141
  • [4] Mechanical Performance of Geosynthetic-Reinforced Pile-Supported Embankments
    Sun, Ling
    Zheng, Jun-Jie
    Zhang, Jun
    Ma, Qiang
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1, 2, 2011, 156-157 : 1696 - 1701
  • [5] Centrifuge Modeling Investigation of Geosynthetic-Reinforced and Pile-Supported Embankments
    Jiang, Yanbin
    Li, Shi-Tong
    He, Ning
    Xu, Binhua
    Fan, Wenhu
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (08)
  • [6] Reinforcement load in geosynthetic-reinforced pile-supported model embankments
    Liu, Chengyu
    Shan, Yao
    Wang, Binglong
    Zhou, Shunhua
    Wang, Changdan
    GEOTEXTILES AND GEOMEMBRANES, 2022, 50 (06) : 1135 - 1146
  • [7] Investigation on Load Transfer in Geosynthetic-Reinforced Pile-Supported Embankments
    Yan, Muhan
    Guo, Shuaijie
    Zhang, Haiyang
    Song, Xuguo
    Xiao, Hong
    INDIAN GEOTECHNICAL JOURNAL, 2025, 55 (01) : 161 - 175
  • [8] Introduction to Special Issue on Geosynthetic-reinforced pile-supported embankments
    van Eekelen, S. J. M.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (02) : 111 - 111
  • [9] Foreword to special issue on geosynthetic-reinforced pile-supported embankments
    Bathurst, R. J.
    Giroud, J. P.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (02) : 110 - 110
  • [10] Probabilistic three-dimensional finite element analysis of geosynthetic-reinforced pile-supported embankments
    Agarwal, E.
    Luo, N.
    GEOSHANGHAI INTERNATIONAL CONFERENCE 2024, VOL 7, 2024, 1336