Mastering the Foreign Ionic Radius in CeO2 Supports of Ni-Based Catalysts for Efficient CO2 Methanation

被引:1
|
作者
Lou, Hao [1 ]
Ren, Jie [2 ]
Xu, Nuo [1 ]
Ullah, Inam [1 ]
Ahmed, Syed Musab [1 ]
Abbasi, Zeeshan [1 ]
Wu, Wenlong [3 ]
Wang, Zhandong [1 ,4 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Anhui, Peoples R China
[3] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Anhui, Peoples R China
[4] Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
基金
美国国家科学基金会;
关键词
EVOLUTION;
D O I
10.1021/acs.iecr.4c02490
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A Ni-based catalyst is a common non-noble-metal system for CO2 methanation, and metal modification for the support is an effective method to further improve its activity. Doping metals with various ionic radii already exhibited different effects on the methanation performance, but the promotion mechanism remains indistinct. Herein, we report a universal doping strategy to fabricate Ni-based catalysts by tailoring foreign ions (Al3+, Zr4+, Y3+, and Sm4+) with different radii in CeO2. Among them, Ni/Ce0.9Al0.1Ox exhibited the highest catalytic performance (72.4% of CO2 conversion at 300 degrees C) compared with other catalysts at all temperatures and with the lowest kinetic temperature range. Furthermore, the change in the foreign ionic radius had a variety of effects on the structure of the catalysts, in which the specific surface area and oxygen vacancy concentration were the main factors. According to mechanical measurements, the doping of foreign ions reduced the temperature of the started methanation and inhibited CO formation, resulting in enhanced catalytic activity CO2 conversion and increased CH4 selectivity. The hydroxyl groups derived from the oxygen vacancy facilitated the transformation of CO2 to CH4 via the HCOO* path. This work contributes to developing a promising approach to controlling the performance of CO2 methanation by regulating the foreign ionic radius.
引用
收藏
页码:17103 / 17111
页数:9
相关论文
共 50 条
  • [31] Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts
    Chen, Xiaohan
    Ye, Runping
    Sun, Chunyan
    Jin, Chengkai
    Wang, Yuan
    Arandiyan, Hamidreza
    Lim, Kang Hui
    Song, Guoqiang
    Hu, Feiyang
    Li, Claudia
    Lu, Zhang-Hui
    Feng, Gang
    Zhang, Rongbin
    Kawi, Sibudjing
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [32] Electronic Regulation on Ni-based Catalysts for Efficient CO2 Electroreduction
    Wang, Xiaotong
    Wei, Yiheng
    Song, Yanfang
    CHEMELECTROCHEM, 2024, 11 (07)
  • [33] Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation
    Jomjaree, Thapanee
    Sintuya, Paweennut
    Srifa, Atthapon
    Koo-amornpattana, Wanida
    Kiatphuengporn, Sirapassorn
    Assabumrungrat, Suttichai
    Sudoh, Masao
    Watanabe, Ryo
    Fukuhara, Choji
    Ratchahat, Sakhon
    CATALYSIS TODAY, 2021, 375 (375) : 234 - 244
  • [34] The CO methanation on Rh/CeO2 and CeO2/Rh model catalysts:: a comparative study
    Jenewein, B
    Fuchs, M
    Hayek, K
    SURFACE SCIENCE, 2003, 532 : 364 - 369
  • [35] Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation
    Alrafei, Bachar
    Polaert, Isabelle
    Ledoux, Alain
    Azzolina-Jury, Federico
    CATALYSIS TODAY, 2020, 346 : 23 - 33
  • [36] A detailed characterization study of Ni/CeO2 catalysts identifies Ni availability as the primary factor affecting CO2 methanation performance
    Chen, Sining
    Higgins, Luke
    Giarnieri, Ilenia
    Benito, Patricia
    Beale, Andrew M.
    JOURNAL OF CATALYSIS, 2024, 439
  • [37] Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure
    Zhou, Guilin
    Liu, Huiran
    Cui, Kaikai
    Xie, Hongmei
    Jiao, Zhaojie
    Zhang, Guizhi
    Xiong, Kun
    Zheng, Xuxu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (25) : 16108 - 16117
  • [38] Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation
    Sakpal, Tushar
    Lefferts, Leon
    JOURNAL OF CATALYSIS, 2018, 367 : 171 - 180
  • [39] Modifying Spinel Precursors for Highly Active and Stable Ni-based CO2 Methanation Catalysts
    Weber, Dennis
    Wadlinger, Katja M.
    Heinlein, Maximilian M.
    Franken, Tanja
    CHEMCATCHEM, 2022, 14 (20)
  • [40] Understanding defect generation on CeO2 and its utilization for enhanced metal-support interactions in Ni/CeO2 catalysts for improved CO2 methanation performance
    Chen, Sining
    Costley-Wood, Lucy
    Lezcano-Gonzalez, Ines
    Campbell, Emma
    Weng, Zhaoyue
    Molina, M. Asuncion
    Wu, Yani
    Beale, Andrew M.
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 366