MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages

被引:0
|
作者
Wang, Zhiruo [1 ]
Cuenca, Grace [2 ]
Zhou, Shuyan [1 ]
Xu, Frank F. [1 ]
Neubig, Graham [1 ,3 ]
机构
[1] Carnegie Mellon University, United States
[2] Princeton University, United States
[3] Inspired Cognition, United States
来源
EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Findings of EACL 2023 | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Natural language processing systems
引用
收藏
页码:265 / 273
相关论文
共 7 条
  • [1] Code Generation from Natural Language with Less Prior and More Monolingual Data
    Norouzi, Sajad
    Tang, Keyi
    Cao, Yanshuai
    ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 2021, 2 : 776 - 785
  • [2] CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models
    Yu, Hao
    Zhang, Jiaxin
    Liang, Guangtai
    Shen, Bo
    Zhang, Qi
    Li, Ying
    Xie, Tao
    Ran, Dezhi
    Ma, Yuchi
    Wang, Qianxiang
    arXiv, 2023,
  • [3] Formalisation in higher-order logic and code generation to functional languages of the Gauss-Jordan algorithm
    Aransay, Jesus
    Divason, Jose
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2015, 25
  • [4] Novel Natural Language Summarization of Program Code via Leveraging Multiple Input Representations
    Chen, Fuxiang
    Kim, Mijung
    Choo, Jaegul
    Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021, 2021, : 2510 - 2520
  • [5] Context-aware self-adaptations: From requirements specification to code generation
    Ruiz-López, Tomás, 1600, Springer Verlag (8276):
  • [6] Towards Generating Functionally Correct Code Edits from Natural Language Issue Descriptions
    Fakhoury, Sarah
    Musuvathi, Madan
    Chakraborty, Saikat
    Lahiri, Shuvendu K.
    arXiv, 2023,
  • [7] On The Cross-Modal Transfer from Natural Language to Code through Adapter Modules
    Goel, Divyam
    Grover, Ramansh
    Fard, Fatemeh H.
    IEEE International Conference on Program Comprehension, 2022, 2022-March : 71 - 81