共 170 条
- [101] Iizuka O., Kanavati F., Kato K., Rambeau M., Arihiro K., Et al., Deep learning models for histopathological classification of gastric and colonic epithelial tumours, Scientific Reports, 10, 1, pp. 1-11, (2020)
- [102] Khan M. A., Sarfraz M. S., Alhaisoni M., Albesher A. A., Wang S., Et al., Stomachnet: Optimal deep learning features fusion for stomach abnormalities classification, IEEE Access, 8, pp. 197969-197981, (2020)
- [103] Baptista D., Ferreira P. G., Rocha M., Deep learning for drug response prediction in cancer, Briefings in Bioinformatics, 22, 1, pp. 360-379, (2021)
- [104] Mencattini A., Di Giuseppe D., Comes M. C., Casti P., Corsi F., Et al., Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments, Scientific Reports, 10, (2020)
- [105] Kuenzi B. M., Park J., Fong S. H., Sanchez K. S., Lee J., Et al., Predicting drug response and synergy using a deep learning model of human cancer cells, Cancer Cell, 38, 5, pp. 672-684, (2020)
- [106] Coccia M., Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence, Technology in Society, 60, (2020)
- [107] Swapna G., Vinayakumar R., Soman K. P., Diabetes detection using deep learning algorithms, ICT Express, 4, 4, pp. 243-246, (2018)
- [108] Ayon S. I., Islam M., Diabetes prediction: A deep learning approach, International Journal of Information Engineering & Electronic Business, 11, 2, pp. 21-27, (2019)
- [109] Padmapritha T., Prediction of blood glucose level by using an LSTM based recurrent neural networks, 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), pp. 1-4, (2019)
- [110] Li K., Daniels J., Liu C., Herrero P., Georgiou P., Convolutional recurrent neural networks for glucose prediction, IEEE Journal of Biomedical and Health Informatics, 24, 2, pp. 603-613, (2019)