Self-powered intelligent badminton racket for machine learning-enhanced real-time training monitoring

被引:0
|
作者
Yuan, Junlin [1 ,2 ]
Xue, Jiangtao [2 ,5 ]
Liu, Minghao [2 ,6 ]
Wu, Li [2 ,4 ]
Cheng, Jian [2 ,4 ]
Qu, Xuecheng [2 ,7 ]
Yu, Dengjie [2 ,8 ]
Wang, Engui [2 ]
Fan, Zhenmin [9 ]
Liu, Zhuo [2 ,3 ]
Li, Zhou [1 ,2 ,4 ]
Wu, Yuxiang [1 ,2 ]
机构
[1] Jianghan Univ, Inst Intelligent Sport & Proact Hlth, Dept Hlth & Phys Educ, Wuhan 430056, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Beihang Univ, Adv Innovat Ctr Biomed Engn, Sch Engn Med, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100191, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
[5] Beijing Inst Technol, Inst Engn Med, Sch Life Sci, Beijing 100081, Peoples R China
[6] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong 999077, Peoples R China
[7] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol Adv Equipment, Beijing 100084, Peoples R China
[8] Peoples Liberat Army Gen Hosp, Senior Dept Orthoped, Med Ctr 4, Beijing 100048, Peoples R China
[9] Jiangsu Univ Technol, Sch Mech Engn, Changzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Intelligent sports; Self-powered; Intelligent badminton racket; Training monitoring; Machine learning;
D O I
10.1016/j.nanoen.2024.110377
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Intelligent sensing technology exerts a crucial role in badminton training: by capturing the behavior of athletes, the technology can effectively promote the enhancement of motor skills and performance. However, sports sensors that are multifunctional, real-time, and convenient remain an ongoing challenge. This study designs a self-powered intelligent badminton racket (SIBR) with machine learning-based triboelectric/piezoelectric effects. The silver paste coating method is employed for constructing customized electrodes, thereby forming triboelectric sensing array on the badminton strings, which enables hitting position monitoring. Meanwhile, flexible piezoelectric films with a specific shape are embedded in the hand glue; thus, the grip posture is identified. These sensing arrays can directly convert mechanical signals into electrical signals for achieving zero power consumption. In addition, the study integrates a wireless module for signal acquisition and transmission at the bottom of the racket handle, which ensures real-time sensor monitoring based on normal usage. The collected multi-channel data obtained from the SIBR is utilized for machine learning, achieving an accuracy of hitting position that can reach 95.0 %. SIBR provides a powerful reference for badminton training and unfolds a new path and direction for badminton sports monitoring.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-powered biosensing sutures for real-time wound monitoring
    Yan, Miaomiao
    Wu, Zhongdong
    Li, Zihan
    Li, Zhihui
    Wang, Junping
    Hu, Zongqian
    BIOSENSORS & BIOELECTRONICS, 2024, 259
  • [2] Real-time in-situ coatings corrosion monitoring using machine learning-enhanced triboelectric nanogenerator
    Wang, Di
    Li, Yunwei
    Claesson, Per
    Zhang, Fan
    Pan, Jinshan
    Shi, Yijun
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 379
  • [3] Self-powered intelligent liquid crystal attenuator for metasurface real-time modulating
    Niu, Zihao
    Yang, Jiayi
    Yu, Gang
    Wang, Meiqi
    Hong, Keke
    Zhu, Xiaopeng
    Mao, Xu
    Li, Xiuhan
    NANO ENERGY, 2024, 129
  • [4] Self-Powered Wearable Cardiac Stethoscope for Real-Time Monitoring Heart Failure
    Zhang, Qiyuan
    Zhong, Tianyan
    Liang, Shan
    Xue, Xinyu
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (11) : 1691 - 1697
  • [5] A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming
    Mao, Yupeng
    Zhu, Yongsheng
    Zhao, Tianming
    Jia, Changjun
    Bian, Meiyue
    Li, Xinxing
    Liu, Yuanguo
    Liu, Baodan
    BIOSENSORS-BASEL, 2021, 11 (05):
  • [6] An integrated wearable self-powered platform for real-time and continuous temperature monitoring
    Li, Weiyan
    Song, Zhongqian
    Kong, Huijun
    Chen, Minqi
    Liu, Shengjie
    Bao, Yu
    Ma, Yingming
    Sun, Zhonghui
    Liu, Zhenbang
    Wang, Wei
    Niu, Li
    NANO ENERGY, 2022, 104
  • [7] LAMANet: A Real-Time, Machine Learning-Enhanced Approximate Message Passing Detector for Massive MIMO
    Brennsteiner, Stefan
    Arslan, Tughrul
    Thompson, John S. S.
    McCormick, Andrew
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (03) : 382 - 395
  • [8] A self-powered wireless sweat-analysis patch for real-time monitoring physiological status
    Cao, Hanyu
    Lin, Rui
    Long, Zhihe
    Xing, Lili
    Xue, Xinyu
    NANO ENERGY, 2024, 123
  • [9] A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil Health Monitoring System
    Ramson, S. R. Jino
    Leon-Salas, Walter D.
    Brecheisen, Zachary
    Foster, Erika J.
    Johnston, Cliff T.
    Schulze, Darrell G.
    Filley, Timothy
    Rahimi, Rahim
    Soto, Martin Juan Carlos Villalta
    Bolivar, Juan A. Lopa
    Malaga, Mauricio Postigo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9278 - 9293
  • [10] Self-Powered Wearable Micropyramid Piezoelectric Film Sensor for Real-Time Monitoring of Blood Pressure
    Kim, Yunjeong
    Lee, JiYong
    Hong, Hyeonaug
    Park, SeungHyun
    Ryu, WonHyoung
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)