Self-powered intelligent badminton racket for machine learning-enhanced real-time training monitoring

被引:5
作者
Yuan, Junlin [1 ,2 ]
Xue, Jiangtao [2 ,5 ]
Liu, Minghao [2 ,6 ]
Wu, Li [2 ,4 ]
Cheng, Jian [2 ,4 ]
Qu, Xuecheng [2 ,7 ]
Yu, Dengjie [2 ,8 ]
Wang, Engui [2 ]
Fan, Zhenmin [9 ]
Liu, Zhuo [2 ,3 ]
Li, Zhou [1 ,2 ,4 ]
Wu, Yuxiang [1 ,2 ]
机构
[1] Jianghan Univ, Inst Intelligent Sport & Proact Hlth, Dept Hlth & Phys Educ, Wuhan 430056, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Beihang Univ, Adv Innovat Ctr Biomed Engn, Sch Engn Med, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100191, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
[5] Beijing Inst Technol, Inst Engn Med, Sch Life Sci, Beijing 100081, Peoples R China
[6] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong 999077, Peoples R China
[7] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol Adv Equipment, Beijing 100084, Peoples R China
[8] Peoples Liberat Army Gen Hosp, Senior Dept Orthoped, Med Ctr 4, Beijing 100048, Peoples R China
[9] Jiangsu Univ Technol, Sch Mech Engn, Changzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Intelligent sports; Self-powered; Intelligent badminton racket; Training monitoring; Machine learning;
D O I
10.1016/j.nanoen.2024.110377
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Intelligent sensing technology exerts a crucial role in badminton training: by capturing the behavior of athletes, the technology can effectively promote the enhancement of motor skills and performance. However, sports sensors that are multifunctional, real-time, and convenient remain an ongoing challenge. This study designs a self-powered intelligent badminton racket (SIBR) with machine learning-based triboelectric/piezoelectric effects. The silver paste coating method is employed for constructing customized electrodes, thereby forming triboelectric sensing array on the badminton strings, which enables hitting position monitoring. Meanwhile, flexible piezoelectric films with a specific shape are embedded in the hand glue; thus, the grip posture is identified. These sensing arrays can directly convert mechanical signals into electrical signals for achieving zero power consumption. In addition, the study integrates a wireless module for signal acquisition and transmission at the bottom of the racket handle, which ensures real-time sensor monitoring based on normal usage. The collected multi-channel data obtained from the SIBR is utilized for machine learning, achieving an accuracy of hitting position that can reach 95.0 %. SIBR provides a powerful reference for badminton training and unfolds a new path and direction for badminton sports monitoring.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Triboelectric nanogenerators [J].
Cheng, Tinghai ;
Shao, Jiajia ;
Wang, Zhong Lin .
NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01)
[2]   TIVEE: Visual Exploration and Explanation of Badminton Tactics in Immersive Visualizations [J].
Chu, Xiangtong ;
Xie, Xiao ;
Ye, Shuainan ;
Lu, Haolin ;
Xiao, Hongguang ;
Yuan, Zeqing ;
Chen, Zhutian ;
Zhang, Hui ;
Wu, Yingcai .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) :118-128
[3]   Versatile Core-Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing [J].
Dong, Kai ;
Deng, Jianan ;
Ding, Wenbo ;
Wang, Aurelia C. ;
Wang, Peihong ;
Cheng, Chaoyu ;
Wang, Yi-Cheng ;
Jin, Limin ;
Gu, Bohong ;
Sun, Baozhong ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2018, 8 (23)
[4]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[5]   Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor [J].
Fan, Wei ;
Lei, Ruixin ;
Dou, Hao ;
Wu, Zheng ;
Lu, Linlin ;
Wang, Shujuan ;
Liu, Xuqing ;
Chen, Weichun ;
Rezakazemi, Mashallah ;
Aminabhavi, Tejraj M. ;
Li, Yi ;
Ge, Shengbo .
NATURE COMMUNICATIONS, 2024, 15 (01)
[6]   Efficient Energy Harvesting Using Processed Poly(vinylidene fluoride) Nanogenerator [J].
Gaur, Anupama ;
Kumar, Chandan ;
Tiwari, Shivam ;
Maiti, Pralay .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3019-3024
[7]   Ultrahigh energy density of poly(vinylidene fluoride) from synergistically improved dielectric constant and withstand voltage by tuning the crystallization behavior [J].
Guo, Ru ;
Luo, Hang ;
Zhou, Xuefan ;
Xiao, Zhida ;
Xie, Haoran ;
Liu, Yuan ;
Zhou, Kechao ;
Shen, Zhonghui ;
Chen, Longqing ;
Zhang, Dou .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (48) :27660-27671
[8]   Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology [J].
Hinchet, Ronan ;
Yoon, Hong-Joon ;
Ryu, Hanjun ;
Kim, Moo-Kang ;
Choi, Eue-Keun ;
Kim, Dong-Sun ;
Kim, Sang-Woo .
SCIENCE, 2019, 365 (6452) :491-+
[9]   Strategies to achieve high performance piezoelectric nanogenerators [J].
Hu, Dengwei ;
Yao, Minggang ;
Fan, Yong ;
Ma, Chunrui ;
Fan, Mingjin ;
Liu, Ming .
NANO ENERGY, 2019, 55 :288-304
[10]   Triboelectric Nanogenerator: Structure, Mechanism, and Applications [J].
Kim, Weon-Guk ;
Kim, Do-Wan ;
Tcho, Il-Woong ;
Kim, Jin-Ki ;
Kim, Moon-Seok ;
Choi, Yang-Kyu .
ACS NANO, 2021, 15 (01) :258-287