A thin Si nanowire network anode for high volumetric capacity and long-life lithium-ion batteries

被引:32
作者
Saana Amiinu I. [1 ,2 ]
Imtiaz S. [1 ,2 ]
Geaney H. [1 ,2 ]
Kennedy T. [1 ,2 ]
Kapuria N. [1 ,2 ]
Singh S. [1 ,2 ]
Ryan K.M. [1 ,2 ]
机构
[1] Bernal Institute, University of Limerick, Limerick
[2] Department of Chemical Sciences, University of Limerick, Limerick
来源
Journal of Energy Chemistry | 2023年 / 81卷
基金
欧盟地平线“2020”; 爱尔兰科学基金会;
关键词
Amorphous ligaments; Lithium-ion batteries; LMO cathode; Si NW anode; Silicidation; Volumetric capacity;
D O I
10.1016/j.jechem.2023.02.025
中图分类号
学科分类号
摘要
Silicon nanowires (Si NWs) have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries (LIBs) owing to their high capacity and low discharge potential. However, growing binder-free Si NW anodes with adequate mass loading and stable capacity is severely limited by the low surface area of planar current collectors (CCs), and is particularly challenging to achieve on standard pure-Cu substrates due to the ubiquitous formation of Li+ inactive silicide phases. Here, the growth of densely-interwoven In-seeded Si NWs is facilitated by a thin-film of copper-silicide (CS) network in situ grown on a Cu-foil, allowing for a thin active NW layer (<10 µm thick) and high areal loading ( ≈ 1.04 mg/cm2) binder-free electrode architecture. The electrode exhibits an average Coulombic efficiency (CE) of > 99.6% and stable performance for > 900 cycles with ≈ 88.7% capacity retention. More significantly, it delivers a volumetric capacity of ≈ 1086.1 mA h/cm3 at 5C. The full-cell versus lithium manganese oxide (LMO) cathode delivers a capacity of ≈ 1177.1 mA h/g at 1C with a stable rate capability. This electrode architecture represents significant advances toward the development of binder-free Si NW electrodes for LIB application. © 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences
引用
收藏
页码:20 / 27
页数:7
相关论文
共 49 条
[1]  
Chae S., Ko M., Kim K., Ahn K., Cho J., Joule, 1, pp. 47-60, (2017)
[2]  
Zhou G., Xu L., Hu G., Mai L., Cui Y., Chem. Rev., 119, (2019)
[3]  
Chen Y., Kang Y., Zhao Y., Wang L., Liu J., Li Y., Liang Z., He X., Li X., Tavajohi N., Li B., J. Energy Chem., 59, pp. 83-99, (2021)
[4]  
Chan C.K., Peng H., Liu G., McILwrath K., Zhang X.F., Huggins R.A., Cui Y., Nat. Nanotechnol., 3, (2008)
[5]  
Chen S., Chen Z., Xu X., Cao C., Xia M., Luo Y., Small, 14, (2018)
[6]  
Lu J., Liu J., Gong X., Pang S., Zhou C., Li H., Qian G., Wang Z., Energy Storage Mater., 46, pp. 594-604, (2022)
[7]  
Xu Q., Wang Q., Chen D., Zhong Y., Wu Z., Song Y., Wang G., Liu Y., Zhong B., Guo X., (2021)
[8]  
Wang B., Ryu J., Choi S., Zhang X., Pribat D., Li X., Zhi L., Park S., Ruoff R.S., ACS Nano, 13, pp. 2307-2315, (2019)
[9]  
Bogart T.D., Oka D., Lu X., Gu M., Wang C., Korgel B.A., ACS Nano, 8, pp. 915-922, (2014)
[10]  
Fan Y., Zhang Q., Xiao Q., Wang X., Huang K., Carbon, 59, pp. 264-269, (2013)